
CHAPTER 1

Introduction to Mechanical Vibrations

Vibration is the motion of a particle or a body or system of connected bodies displaced
from a position of equilibrium. Most vibrations are undesirable in machines and structures
because they produce increased stresses, energy losses, cause added wear, increase bearing
loads, induce fatigue, create passenger discomfort in vehicles, and absorb energy from the
system. Rotating machine parts need careful balancing in order to prevent damage from
vibrations.

Vibration occurs when a system is displaced from a position of stable equilibrium. The
system tends to return to this equilibrium position under the action of restoring forces (such as
the elastic forces, as for a mass attached to a spring, or gravitational forces, as for a simple
pendulum). The system keeps moving back and forth across its position of equilibrium. A system
is a combination of elements intended to act together to accomplish an objective. For example,
an automobile is a system whose elements are the wheels, suspension, car body, and so forth.
A static element is one whose output at any given time depends only on the input at that time
while a dynamic element is one whose present output depends on past inputs. In the same way
we also speak of static and dynamic systems. A static system contains all elements while a
dynamic system contains at least one dynamic element.

A physical system undergoing a time-varying interchange or dissipation of energy among
or within its elementary storage or dissipative devices is said to be in a dynamic state. All of
the elements in general are called passive, i.e., they are incapable of generating net energy. A
dynamic system composed of a finite number of storage elements is said to be lumped or discrete,
while a system containing elements, which are dense in physical space, is called continuous.
The analytical description of the dynamics of the discrete case is a set of ordinary differential
equations, while for the continuous case it is a set of partial differential equations. The analytical
formation of a dynamic system depends upon the kinematic or geometric constraints and the
physical laws governing the behaviour of the system.
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Vibrations can be classified into three categories: free, forced, and self-excited. Free vibration of
a system is vibration that occurs in the absence of external force. An external force that acts on
the system causes forced vibrations. In this case, the exciting force continuously supplies energy
to the system. Forced vibrations may be either deterministic or random (see Fig. 1.1). Self-
excited vibrations are periodic and deterministic oscillations. Under certain conditions, the
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equilibrium state in such a vibration system becomes unstable, and any disturbance causes
the perturbations to grow until some effect limits any further growth. In contrast to forced
vibrations, the exciting force is independent of the vibrations and can still persist even when
the system is prevented from vibrating.
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Fig. 1.1(a) A deterministic (periodic) excitation.
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Fig. 1.1(b) Random excitation.
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In general, a vibrating system consists of a spring (a means for storing potential energy), a
mass or inertia (a means for storing kinetic energy), and a damper (a means by which energy
is gradually lost) as shown in Fig. 1.2. An undamped vibrating system involves the transfer of
its potential energy to kinetic energy and kinetic energy to potential energy, alternatively. In
a damped vibrating system, some energy is dissipated in each cycle of vibration and should be
replaced by an external source if a steady state of vibration is to be maintained.
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Fig. 1.2 Elementary parts of vibrating systems.
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When the motion is repeated in equal intervals of time, it is known as periodic motion. Simple
harmonic motion is the simplest form of periodic motion. If x(t) represents the displacement of
a mass in a vibratory system, the motion can be expressed by the equation

x = A cos ωt = A cos 2π 
t
τ

where A is the amplitude of oscillation measured from the equilibrium position of the mass.

The repetition time τ is called the period of the oscillation, and its reciprocal, f = 
1
τ

, is called the

frequency. Any periodic motion satisfies the relationship
x (t) = x (t + τ)

That is  Period τ = ω
π2

 s/cycle

Frequency f = 
1
τ

 = 
ω
π2  cycles/s, or Hz

ω is called the circular frequency measured in rad/sec.
The velocity and acceleration of a harmonic displacement are also harmonic of the same

frequency, but lead the displacement by π/2 and π radians, respectively. When the acceleration
��X  of a particle with rectilinear motion is always proportional to its displacement from a fixed

point on the path and is directed towards the fixed point, the particle is said to have simple
harmonic motion.

The motion of many vibrating systems in general is not harmonic. In many cases the
vibrations are periodic as in the impact force generated by a forging hammer. If x(t) is a peri-
odic function with period τ, its Fourier series representation is given by

x(t) = 
a0

2
 + 

n =

∞

∑
1

(an cos nωt + bn sin nωt)

where ω = 2π/τ is the fundamental frequency and a0, a1, a2, …, b1, b2, … are constant coeffi-
cients, which are given by:

a0 = 
2

0τ

τz x(t) dt
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an =  
2

0τ

τz x(t) cos nωt dt

bn =  
2

0τ

τz x(t) sin nωt dt

The exponential form of x(t) is given by:

x(t) = 
n

n
in tc e

= − ∞

∞

∑ ω

The Fourier coefficients cn can be determined, using

cn = 
1

0τ

τz (x)t e–inωt dt

The harmonic functions an cos nωt or bn sin nωt are known as the harmonics of order n
of the periodic function x(t). The harmonic of order n has a period τ/n. These harmonics can be
plotted as vertical lines in a diagram of amplitude (an and bn) versus frequency (nω) and is
called frequency spectrum.
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Most of the mechanical and structural systems can be described using a finite number of de-
grees of freedom. However, there are some systems, especially those include continuous elas-
tic members, have an infinite number of degree of freedom. Most mechanical and structural
systems have elastic (deformable) elements or components as members and hence have an
infinite number of degrees of freedom. Systems which have a finite number of degrees of free-
dom are known as discrete or lumped parameter systems, and those systems with an infinite
number of degrees of freedom are called continuous or distributed systems.
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The outputs of a vibrating system, in general, depend upon the initial conditions, and external
excitations. The vibration analysis of a physical system may be summarised by the four steps:

1. Mathematical Modelling of a Physical System
2. Formulation of Governing Equations
3. Mathematical Solution of the Governing Equations

1. Mathematical modelling of a physical system
The purpose of the mathematical modelling is to determine the existence and nature of

the system, its features and aspects, and the physical elements or components involved in the
physical system. Necessary assumptions are made to simplify the modelling. Implicit assump-
tions are used that include:

(a) A physical system can be treated as a continuous piece of matter
(b) Newton’s laws of motion can be applied by assuming that the earth is an internal

frame
(c) Ignore or neglect the relativistic effects
All components or elements of the physical system are linear. The resulting mathemati-

cal model may be linear or non-linear, depending on the given physical system. Generally
speaking, all physical systems exhibit non-linear behaviour. Accurate mathematical model-
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ling of any physical system will lead to non-linear differential equations governing the behav-
iour of the system. Often, these non-linear differential equations have either no solution or
difficult to find a solution. Assumptions are made to linearise a system, which permits quick
solutions for practical purposes. The advantages of linear models are the following:

(1) their response is proportional to input
(2) superposition is applicable
(3) they closely approximate the behaviour of many dynamic systems
(4) their response characteristics can be obtained from the form of system equations

without a detailed solution
(5) a closed-form solution is often possible
(6) numerical analysis techniques are well developed, and
(7) they serve as a basis for understanding more complex non-linear system behaviours.
It should, however, be noted that in most non-linear problems it is not possible to obtain

closed-form analytic solutions for the equations of motion. Therefore, a computer simulation
is often used for the response analysis.

When analysing the results obtained from the mathematical model, one should realise
that the mathematical model is only an approximation to the true or real physical system and
therefore the actual behaviour of the system may be different.

2. Formulation of governing equations
Once the mathematical model is developed, we can apply the basic laws of nature and

the principles of dynamics and obtain the differential equations that govern the behaviour of
the system. A basic law of nature is a physical law that is applicable to all physical systems
irrespective of the material from which the system is constructed. Different materials behave
differently under different operating conditions. Constitutive equations provide information
about the materials of which a system is made. Application of geometric constraints such as
the kinematic relationship between displacement, velocity, and acceleration is often necessary
to complete the mathematical modelling of the physical system. The application of geometric
constraints is necessary in order to formulate the required boundary and/or initial conditions.

The resulting mathematical model may be linear or non-linear, depending upon the
behaviour of the elements or components of the dynamic system.

3. Mathematical solution of the governing equations
The mathematical modelling of a physical vibrating system results in the formulation of

the governing equations of motion. Mathematical modelling of typical systems leads to a sys-
tem of differential equations of motion. The governing equations of motion of a system are
solved to find the response of the system. There are many techniques available for finding the
solution, namely, the standard methods for the solution of ordinary differential equations,
Laplace transformation methods, matrix methods, and numerical methods. In general, exact
analytical solutions are available for many linear dynamic systems, but for only a few non-
linear systems. Of course, exact analytical solutions are always preferable to numerical or
approximate solutions.

4. Physical interpretation of the results
The solution of the governing equations of motion for the physical system generally

gives the performance. To verify the validity of the model, the predicted performance is com-
pared with the experimental results. The model may have to be refined or a new model is
developed and a new prediction compared with the experimental results. Physical interpreta-
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tion of the results is an important and final step in the analysis procedure. In some situations,
this may involve (a) drawing general inferences from the mathematical solution, (b) develop-
ment of design curves, (c) arrive at a simple arithmetic to arrive at a conclusion (for a typical or
specific problem), and (d) recommendations regarding the significance of the results and any
changes (if any) required or desirable in the system involved.

1.5.1 COMPONENTS OF VIBRATING SYSTEMS

(a) Stiffness elements
Some times it requires finding out the equivalent spring stiffness values when a con-

tinuous system is attached to a discrete system or when there are a number of spring elements
in the system. Stiffness of continuous elastic elements such as rods, beams, and shafts, which
produce restoring elastic forces, is obtained from deflection considerations.

The stiffness coefficient of the rod (Fig. 1.3) is given by k = 
EA
l

The cantilever beam (Fig.1.4) stiffness is   k = 
3

3

EI
l

The torsional stiffness of the shaft (Fig.1.5) is K = 
GJ

l

m

k=
l
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m
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E,A, l

u

 Fig.1.3 Longitudinal vibration of rods.
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Fig.1.4 Transverse vibration of cantilever beams.
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G , J , l
T

�

k=GJ
l

Fig. 1.5 Torsional system.

When there are several springs arranged in parallel as shown in Fig. 1.6, the equivalent
spring constant is given by algebraic sum of the stiffness of individual springs. Mathemati-
cally,

                                  keq = 
i

n

ik
=
∑

1

m

k1

k2

kn

Fig. 1.6 Springs in parallel.

When the springs are arranged in series as shown in Fig. 1.7, the same force is devel-
oped in each spring and is equal to the force acting on the mass.

k1 k2 k3
m

kn

Fig. 1.7 Springs in series.

The equivalent stiffness keq is given by:

1/keq = 
1

1

1i

n

ik=
∑

Hence, when elastic elements are in series, the reciprocal of the equivalent elastic con-
stant is equal to the reciprocals of the elastic constants of the elements in the original system.

(b) Mass or inertia elements
The mass or inertia element is assumed to be a rigid body. Once the mathematical

model of the physical vibrating system is developed, the mass or inertia elements of the sys-
tem can be easily identified.
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(c) Damping elements
In real mechanical systems, there is always energy dissipation in one form or another.

The process of energy dissipation is referred to in the study of vibration as damping. A damper
is considered to have neither mass nor elasticity. The three main forms of damping are viscous
damping, Coulomb or dry-friction damping, and hysteresis damping. The most common type
of energy-dissipating element used in vibrations study is the viscous damper, which is also
referred to as a dashpot. In viscous damping, the damping force is proportional to the velocity
of the body. Coulomb or dry-friction damping occurs when sliding contact that exists between
surfaces in contact are dry or have insufficient lubrication. In this case, the damping force is
constant in magnitude but opposite in direction to that of the motion. In dry-friction damping
energy is dissipated as heat.

Solid materials are not perfectly elastic and when they are deformed, energy is absorbed
and dissipated by the material. The effect is due to the internal friction due to the relative
motion between the internal planes of the material during the deformation process. Such
materials are known as visco-elastic solids and the type of damping which they exhibit is
called as structural or hysteretic damping, or material or solid damping.

In many practical applications, several dashpots are used in combination. It is quite
possible to replace these combinations of dashpots by a single dashpot of an equivalent damp-
ing coefficient so that the behaviour of the system with the equivalent dashpot is considered
identical to the behaviour of the actual system.
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The most basic mechanical system is the single-degree-of-freedom system, which is characterized
by the fact that its motion is described by a single variable or coordinates. Such a model is
often used as an approximation for a generally more complex system. Excitations can be broadly
divided into two types, initial excitations and externally applied forces. The behavior of a
system characterized by the motion caused by these excitations is called as the system response.
The motion is generally described by displacements.

1.6.1 FREE VIBRATION OF AN UNDAMPED TRANSLATIONAL SYSTEM

The simplest model of a vibrating mechanical system consists of a single mass element
which is connected to a rigid support through a linearly elastic massless spring as shown in
Fig. 1.8. The mass is constrained to move only in the vertical direction. The motion of the
system is described by a single coordinate x(t) and hence it has one degree of freedom (DOF).

m

k LL

Fig. 1.8 Spring mass system.



INTRODUCTION TO MECHANICAL VIBRATIONS 9

The equation of motion for the free vibration of an undamped single degree of freedom
system can be rewritten as

m ��x(t) + kx (t) = 0
Dividing through by m, the equation can be written in the form

��x(t) + ω n
2 x (t) = 0

in which ωn = k m/  is a real constant. The solution of this equation is obtained from the initial
conditions

x(0) = x0, �x(0) = v0
where x0 and v0 are the initial displacement and initial velocity, respectively.

The general solution can be written as

x(t) = A1e A ei t i n
t

nω ω+ −
2

in which A1 and A2 are constants of integration, both complex quantities. It can be finally
simplified as:

x(t) = 
X

e ei t i tn n

2
( ) ( )ω φ ω φ− − −+  = X cos (ωnt – φ)

so that now the constants of integration are X and φ.
This equation represents harmonic oscillation, for which reason such a system is called

a harmonic oscillator.
There are three quantities defining the response, the amplitude X, the phase angle φ

and the frequency ωn, the first two depending on external factors, namely, the initial excitations,
and the third depending on internal factors, namely, the system parameters. On the other
hand, for a given system, the frequency of the response is a characteristic of the system that
stays always the same, independently of the initial excitations. For this reason, ωn is called the
natural frequency of the harmonic oscillator.

The constants X and φ are obtained from the initial conditions of the system as follows:

X = x
v

n
0
2 0

2

+
F
HG

I
KJω

and φ = tan–1 
v

x n

0

0ω

L
N
M
M

O
Q
P
P

The time period τ, is defined as the time necessary for the system to complete one vibra-
tion cycle, or as the time between two consecutive peaks. It is related to the natural frequency
by

τ = 2
2

π
ω

π
n

m
k

=

Note that the natural frequency can also be defined as the reciprocal of the period, or

fn = 1 1
2τ π

=
k
m

in which case it has units of cycles per second (cps), where one cycle per second is known as one
Hertz (Hz).
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1.6.2 FREE VIBRATION OF AN UNDAMPED TORSIONAL SYSTEM

A mass attached to the end of the shaft is a simple torsional system (Fig. 1.9). The mass
of the shaft is considered to be small in comparison to the mass of the disk and is therefore
neglected.

kt

l

IG

Fig. 1.9 Torsional system.

The torque that produces the twist Mt is given by

Mt = 
GJ

l

where J = the polar mass moment of inertia of the shaft J
d=

F
HG

π 4

32
 for a circular shaft of

diameter d
I
K

G = shear modulus of the material of the shaft.
l = length of the shaft.

The torsional spring constant kt is defined as

kt = 
T GJ

lθ
=

The equation of motion of the system can be written as:

IG��θ  + ktθ = 0

The natural circular frequency of such a torsional system is ωn = 
k

I
t

G

F
HG

I
KJ

1/2

The general solution of equation of motion is given by

θ(t) = θ0 cos ωnt + 
�θ
ω

0

n

 sin ωnt

1.6.3 ENERGY METHOD

Free vibration of systems involves the cyclic interchange of kinetic and potential energy. In
undamped free vibrating systems, no energy is dissipated or removed from the system. The
kinetic energy T is stored in the mass by virtue of its velocity and the potential energy U is
stored in the form of strain energy in elastic deformation. Since the total energy in the system
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is constant, the principle of conservation of mechanical energy applies. Since the mechanical
energy is conserved, the sum of the kinetic energy and potential energy is constant and its rate
of change is zero. This principle can be expressed as

T + U = constant

or
d
dt

 (T + U) = 0

where T and U denote the kinetic and potential energy, respectively. The principle of conser-
vation of energy can be restated by

T1 + U1 = T2 + U2
where the subscripts 1 and 2 denote two different instances of time when the mass is passing
through its static equilibrium position and select U1 = 0 as reference for the potential energy.
Subscript 2 indicates the time corresponding to the maximum displacement of the mass at this
position, we have then

T2 = 0
and T1 + 0 = 0 + U2

If the system is undergoing harmonic motion, then T1 and U2 denote the maximum
values of T and U, respectively and therefore last equation becomes

Tmax = Umax

It is quite useful in calculating the natural frequency directly.

1.6.4 STABILITY OF UNDAMPED LINEAR SYSTEMS

The mass/inertia and stiffness parameters have an affect on the stability of an undamped
single degree of freedom vibratory system. The mass and stiffness coefficients enter into the
characteristic equation which defines the response of the system. Hence, any changes in these
coefficient will lead to changes in the system behavior or response. In this section, the effects
of the system inertia and stiffness parameters on the stability of the motion of an undamped
single degree of freedom system are examined. It can be shown that by a proper selection of
the inertia and stiffness coefficients, the instability of the motion of the system can be avoided.
A stable system is one which executes bounded oscillations about the equilibrium position.

1.6.5 FREE VIBRATION WITH VISCOUS DAMPING

Viscous damping force is proportional to the velocity �x of the mass and acting in the
direction opposite to the velocity of the mass and can be expressed as

F = c �x
where c is the damping constant or coefficient of viscous damping. The differential equation of
motion for free vibration of a damped spring-mass system (Fig. 1.10) is written as:

�� �x
c
m

x
k
m

x+ + = 0
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(a) (b)

k c

m
x

k( + x)	 c x
.

mg

Fig. 1.10 Damped spring-mass system.

By assuming x(t) = Cest as the solution, the auxiliary equation obtained is

s
c
m

s
k
m

2 0+ + =

which has the roots

s1, 2 = – 
c
m

c
m

k
m2 2

2

± F
HG

I
KJ −

The solution takes one of three forms, depending on whether the quantity (c/2m)2 – k/m
is zero, positive, or negative. If this quantity is zero,

c = 2mωn
This results in repeated roots s1 = s2 = – c/2m, and the solution is

x(t) = (A + Bt)e–(c/2m)t

As the case in which repeated roots occur has special significance, we shall refer to the
corresponding value of the damping constant as the critical damping constant, denoted by
Cc = 2mωn. The roots can be written as:

s1, 2 = − ± −ζ ζ ω2 1e j n

where ωn = (k/m)1/2 is the circular frequency of the corresponding undamped system, and

ζ = 
c

C
c

mc n

=
2 ω

is known as the damping factor.
If ζ < 1, the roots are both imaginary and the solution for the motion is

x(t) = Xe tnt
d

− +ζω ω φsin ( )

where ωd = 1 2− ζ ωn is called the damped circular frequency which is always less than ω,
and φ is the phase angle of the damped oscillations. The general form of the motion is shown in
Fig. 1.11. For motion of this type, the system is said to be underdamped.
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x(t)

Xe
– t��

� < 1

t

Fig. 1.11 The general form of motion.

If ζ = 1, the damping constant is equal to the critical damping constant, and the system
is said to be critically damped. The displacement is given by

x(t) = (A + Bt)e nt−ω

The solution is the product of a linear function of time and a decaying exponential.
Depending on the values of A and B, many forms of motion are possible, but each form is
characterized by amplitude which decays without oscillations, such as is shown in Fig. 1.12.

t

x(t)

� = 1

Fig. 1.12 Amplitude decaying without oscillations.

In this case ζ > 1, and the system is said to be overdamped. The solution is given by:

x(t) = C e C en nt t
1

1
2

12 2( ) ( )− + − − − −+ζ ζ ω ζ ζ ω

The motion will be non-oscillatory and will be similar to that shown in Fig. 1.13.

t

x(t)

� > 1

Fig. 1.13 Non-oscillatory motion.

1.6.6 LOGARITHMIC DECREMENT

The logarithmic decrement represents the rate at which the amplitude of a free damped vibration
decreases. It is defined as the natural logarithm of the ratio of any two successive amplitudes.




