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FOREWORD 
 
 
 I consider it as a privilege to write foreword for this book “Electromagnetic Fields” written by 

Mr. I. V. VENUGOPALA SWAMY   which is useful for GATE, Engg. Services, JTO and other 

competitive exams. 

 
 
 Electromagnetic fields is an important subject which is common for all Electrical Science 

stream and foundation course for Electronics & Communication stream. It is noticed that many 

students find this subject to be difficult one. Understanding this subject requires lot of imagination 

and principles of Mathematics and Physical Sciences. 

 
 
 Mr. Venu has made an appreciable effort to explain the principles of fields in a simple way. 
 
 
 I expect, the practice of the question bank given in addition to the concepts, instills confidence 

on the basics of the subject. 

 
 
 
 
        

DIRECTOR 
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Electro Magnetic Fields 
 

T
  

OPIC – 1 : VECTOR ANALYSIS                E M F 

1. Introduction: 
 

     In communication systems, circuit theory is valid at both the transmitting end as well as 
the receiving end but it fails to explain the flow between the transmitter and receiver. 
 

     Circuit theory deals with only two variables that is voltage and current whereas 
Electromagnetic theory deals with many variables like electric field intensity, magnetic field 
intensity etc., 
 
       Mostly three space variables are involved in electromagnetic field problems.  Hence the 
solution becomes complex.  For solving field problems we need strong background of vector 
analysis. 

  
       Maxwell has applied vectors to Gauss’s law, Biot Savart’s law, Ampere’s Law and 
Faraday’s Law.  His application of vectors to basic laws, produced a subject called “Field 
Theory”.   
 
 

2. Scalar and Vector Products  
   

a) Dot Product: is also called scalar product. Let ‘θ’ be the angle between vectors 
A and B. 

 
 
     

 
  A . B  = | A |  | B | cosθ 

 The result of dot product is a scalar.  Dot product of force and distance gives work done (or)  
            Energy which is scalar.                                                      
             an 

b) Cross product:  is also called vector product. 
 

                                                                                            B 
                                 A x  B = |A| | B| sinθ ân             
                                                                                                                          A 
  
                  S = |S| ân         where |S| = |A| |B| Sinθ  
 
To find the direction of S, consider a right threaded screw being rotated from A to B. i.e. 
perpendicular to the plane containing the vectors A and B. 
            
                   ∴ A x B = - (B x A) 
 

 3. Operator Del ( ∇  ):  
 Del is a vector three dimensional partial differential operator.  It is defined in Cartesian 
system as 
 
                         ∇  =      ∂    i   +      ∂       j   +     ∂     k 

    ∂x              ∂y                ∂z    

                      

 
 

 Del is a very important operator.  There are 3 possible operations with del. They are gradient, 
divergence and curl. 

     (Contd….2) 



ACE      ::  2  ::     ACE  

4. GRADIENT:  
 Gradient is a basic operation of a Del operator that can operate only on a scalar function. 
Consider a scalar function ‘t’. The gradient of  ‘t’ can be mathematically defined and symbolically 
expressed as below. 
                                                              
            ∇t    =      ∂    i   +    ∂   j    +     ∂   k     t    
         (Grad t)           ∂x             ∂y           ∂z                      

            
  

                     ∇t   =       ∂t   i    +   ∂t   j      +    ∂t  k        
                                    ∂x             ∂y                ∂z 
                             
       Vector  
    
 Gradient of scalar function is a vector function. 

 
 Ex:-    Temperature of soldering iron is scalar, but rate of change of temperature is a   

Vector. In a cable, potential is scalar. The rate of change of potential is a vector (Electric field 
intensity). 

 
5. DIVERGENCE:-  

 

Divergence is a basic operation of the Del operator which can operate only on a vector 
function through a dot product. 

                                                                                        
          Considering a vector function  A = Ax

i + Ay
j + Az

k               
         

     The divergence of vector A mathematically and symbolically expressed as shown below. 
                                                     
              ∇.A  =            ∂    i +      ∂    j   +     ∂     k        .           Ax

i    +    Ay
j   +   Az

k      
  (Div A)          ∂x            ∂y             ∂z                 

                     
        
                    ∇.A   =    ∂Ax  +     ∂Ay   +     ∂Az                  
                                    ∂x           ∂y            ∂z 
                             
      Scalar     
 

 Divergence of vector function is a scalar function. 
 
 Let  D = flux density vector 
   D.ds  =  flux through the surface ds 
 The flux through the entire surface  is    s D.ds 
 

Note: Divergence of D gives net outflow of flux per unit volume. 
 

 
  
              ∴    

 
∇. D  =    Lt       D.ds      s
     ∆V     0    ∆V  

∫∫ 

∫∫   

 
 
 6. CURL: 

Curl is a basic operation of a Del operator which can perform only on a vector function 
through a cross product. 
 
 
 
 

     (Contd.…3) 
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              ∇xA       =       ∂    i +      ∂    j  +    ∂     k          x          Ax
i    +    Ay

j   +   Az
k     

  (Curl A)          ∂x            ∂y           ∂z                   
                      

                                                  
                             =           i               j                k 
                                         ∂              ∂            ∂    
                                         ∂x            ∂y             ∂z 
                       vector      Ax           Ay                Az   
 

                          
         =     ∂Az  _  ∂Ay     i  _     ∂Az  _  ∂Ax        j   +      ∂Ay    _   ∂Ax    k   
                                        ∂y         ∂z              ∂x        ∂z                      ∂x         ∂y              
 
 Curl of a vector function is a vector function. 
 Curl deals with rotation. 
 If the curl of a vector field vanishes, it is called Irrotational field. 
 Curl is mathematically defined as circulation per unit area. 
 

  Curl v      =    circulation 
    UnitArea 

        
 
 ∴   
 
 
 7. Laplacian of a Scalar function (t) :- 
 

       Double operation  
 

∇ . (∇t)     =    ∇2 t    =    ∆t     =     ∂2t    + ∂2 t  + ∂2 t 
            ∂x2 ∂y2 ∂z2 
 
 
 
 
 
         Laplacian operator 
Laplacian of a scalar function is a scalar function. 

 
8. Laplacian of a Vector function (  A  ): 
             
   Let  A   =  Axi   +    Ayj   +   Azk 

Curl v      =              Lt    v . dl 
                   ∆s→0     ∆s  

∇2 t    =    ∂2    +        ∂
2     + ∂2      t 

    ∂x2            ∂y2 ∂z2

∇2A   =   ∂2Ax + ∂2Ax+  ∂2Ax              ∂2Ay +  ∂2Ay + ∂2Ay                  ∂2Az +  ∂2Az+  ∂2Az      

                   ∂x2    ∂y2        ∂z2   i   +    ∂x2      ∂y2        ∂z2 j  +     ∂x2      ∂y2        ∂z2     k 

∫

 
 
 
 
 

 Laplacian of a vector function is a vector function. 
 
 9. Concept of field:  
 

 Considering a region where every point is associated with a function, then the region is said to  
have a field. 
 If associated function is a scalar then it is a scalar field and if the associated function is a 
vector function then it is a vector field. 
 

     (Contd….4) 
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 10. Basic types of vector fields:  
 

 a) Solenoidal vector field (∇. A =0) 
 b) Irrotational vector field (∇xA =0) 
 c) Vector fields that are both solenoidal & irrotational 
 d) Vector fields which are neither solenoidal nor irrotational 
 
 11. Fundamental theorem of Gradient:  
 Statement: consider an open path from ‘a’ to ‘b’ in a scalar field as shown. The line integral 
of the tangential component of the gradient of a scalar function along the open path is equal to path 
the effective value of the associated scalar function at the boundaries of the open path. 
 

 
 If ‘t’ is the associated scalar function,                                                                  
then according to the fundamental theorem of gradient 

∇t   b 
 ∇tcosθ 

 
                   
                       
 
 
                                                                                                                    
Corollary-1:                                                                                                      
 If  it is a closed path in scalar field, then 
 
                               
                                 
 
 
Corollary-2:                  b  
 A line integral   ∫ (∇t).dl is independent of the open path. 
                                      a  
 

12. Fundamental theorem of Divergence:- (Gauss theorem) 
                          
                                                                                           
 
 
 
 
 
 
 
 
 

 
 
Statement: 
 

Consider a closed surface in vector field. The volume integral of the divergence of the 
associated vector function carried within a enclosed volume is equal to the surface integral of 
the normal component of the associated vector function carried over an enclosing surface. 
 

If associated vector function is A, then according to fundamental theorem of divergence, 
 
                              
 

 
     (Contd…,5) 

 
 
 

   θ 
   dl

Z

Y

a

 Scalar field

  b 
  ∫  (∇t).dl  =  t(b) - t(a)  
  a  

X

   b    

  ∫ (∇t).dl  = 0 
  a 

 
           A 
 
     dv           θ 
                                    da 
 
 

      Enclosed  
Enclosing     volume  
surface 

da 

Vector field 

 
        ( ∇.A )dv = A .da     
    v                    s 
∫∫∫ ∫∫
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Note: Area vector is always outward normal  
     
13. Fundamental theorem of Curl:- (Stokes theorem) 
 

Statement:  Considering an open surface placed in a vector field, the surface integral of the normal 
component of the curl of the associated vector function carried over the open surface is equal to the 
line integral of the tangential component of the associated vector function along the boundary of the 
open surface. 
 

 If  associated vector function is A, then   
                  

 
          
       

 
     
  

Corollary-1: If it is a closed surface 
 
 
 
                                                                                  
 
  Since there is no boundary and hence 
  
 
 
 
 

 
Corollary-2:     A . dl is constant for a fixed boundary.Therefore ,   s(∇ x A ).da  is independent 
of the type of open surface. 

 
 14. Vector Identities:     

a) ∇ x ∇ φ = 0 

b) ∇ . ∇ x A = 0 

c) ∇ . φ A = ∇ φ . A +  φ (∇. A) 

d) ∇ x φ A = ∇ φ x A + φ (∇ x A) 

e) ∇ x ∇ x A = ∇ (∇ . A) -  ∇2 A 

f) ∇ . ∇ φ =  ∇2 φ 

g) ∇( φF) =  φ(∇ . F) + F ∇ φ 

h) Div (u x v) =  v curl u – u curl v  

i) A . B x C =  B . C x A = C . A x B  

j) ∇ . A x B =  B . ∇ x A – A . ∇ x B 

k) ∇2A = ∇ (∇ . A) - ∇ x (∇ x A) 
 

15. Co-ordinate systems:    
 

a) Cartesian co-ordinate system (x,y,z) 
b) Spherical co-ordinate system (r,θ,φ) 
c) Cylindrical co-ordinate system (r,φ,z)          (Contd….6) 

 
 

da da 

θ 
dl 

A 

∇xA

θ 

Vector field 

 
 s ( ∇xA ).da =     A . dl ∫∫ ∫

 
    ∇xA ).da =  0  (S 
∫∫ 

∫  

 
   A . dl   =  0  ∫

∫∫ 
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 15.a)  Cartesian co-ordinate system :- (x,y,z)  

               Z 
 
 
           z                P(x,y,z) 
 
    θ         r 
                              y  
                           Y 
             φ  
           x 
 
    

 
 
 
 
 
 
 
 
 
 
    
 

                
 Differential length,               

            dl = dx  i + dy  j + dz  k 

            Z 
       dz  
 
           p2(x+dx,y+dy,z+dz)  
       p1(x,y,z)  
                    z  
              
          y            dy           Y 
 x 
       
    dx  
X 
 
 

 
 

  15.b) Spherical  co-ordinate system :- ( r,θ,φ )                                                                              
                                                                                                X  
                      
             
                                       P(r,θ,φ) 
              r  
                    θ   
             
                                    Y
                    φ   
             
         
                                                                                 Z  
 
Cartesian to spherical        Spherical to Cartesian   
 
   X  = rSinθ Cos φ         r = √ x2 + y2 + z2 
   Y  = rSinθ Sin φ         θ = Cos-1         Z 
   Z  = rcosθ              √ x2 + y2 + z2  
                      φ = Tan-1( y/x)  

                                                   
Note:  In Spherical system unit vectors are  r, θ, φ  
Differential Length Vector: 
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Ranges:  r  =  0 → ∝ 
   θ  =  0 → ∏    
   φ  =  0 → 2∏  
          
 
 
          
 
 
         
 

  
Differential length,           
          
   

 r varying direction 
 
φ varying direction 
 
   θ varying direction 

dl  = ( dr)r + (rdθ)θ  + (r sinθ dφ) φ   
               

    
 
 
 
 
 
15.c) Cylindrical co-ordinate system: ( r, φ, z )  
 
 
 
 
 
                                                                                              
 
 
 
  
 
 
 
 
 Cartesian to Cylindrical     Cylindrical to Cartesian   

   
   Z  
           r 
      
           z                     P(r,φ,z)  
 
 
                                
                           Y 

φ  
          
 
X 

 
   r = √ x2 + y2       x = r cosφ 
  φ =  tan-1 (y/x)      y = r sinφ  
  z  =  z        z =  z 
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Note: In cylindrical system unit vectors are  r,  φ , z  

  
 
Differential  Length Vector:      
     
Ranges:  
  r  =  0        ∝ 
 φ  =  0        2∏         
 z   = - ∝        + ∝  
 
 
 
Differential length, 
 
16. Differential areas: ( da (or) ds ) 

a) Cartesian system:  
              

 dl = dx i + dy j + dz k 
 
 
 

b) Spherical system:  
                                              
    dl = (dr) r   + (rdθ) θ  + ( r sinθ dφ) φ 
 
 
      
 

 
 
 
 
 

c) Cylindrical system:  
                                              
    dl = (dr) r   + (rdφ) φ   + (dz) z 
                                                           

            
da = dx dy k

                                   
  da= (r2 sinθ dθ dφ) r   

                       
 da = (rdφ dz) r 

                
dl  = (dr) r + (rdφ) φ + (dz) z 
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17. Differential volumes: (dv)   
 

a) Cartesian system: 
                            

dl  = dx i  +  dy j  +dz k 
 

 dv = dx dy dz 
 
 

b) Spherical system:  
                             

 dl  = (dr) r + (rdθ ) θ  + (r sinθ dφ) φ  
 
 
 
 

c) Cylindrical system:  
  
   dl = (dr) r + (rdφ) φ + (dz) z 

 
                                   

 
dv = r2 sinθ dr dθ dφ 

 dv = rdr dφ dz 
 
18. Dot Product between  Spherical & Cartesian system unit vectors. 
 
 
                        Cartesian  
                                        i                j                  k  
            Spherical 
                         
                   r        sinθ cosφ    sinθ sinφ        cosθ 
 
   
  θ      cosθ cosφ     cosθ sinφ      - sinθ  
 
   
  φ      - sinφ              cosφ                0  
 
19. Dot Product between Cylindrical & Cartesian system unit vectors. 
 
                        Cartesian  
                                        i                j                  k  
          Cylindrical 
                        
                   r             cosφ         sinφ               0 
 
    
  φ          - sinφ          cosφ              0 
 
    
  z              0                 0                1  
 
 
 
 

20. General Curvilinear  Co-ordinate  System   
 

           Let  h1, h2 & h3   be scale factors   
       u1,  U2 & u3   be co-ordinate system 
        
       e1,   e2 & e3   be  unit vectors 
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Cartesian system        Spherical system                 Cylindrical system   
 

h,h2, h3  Ξ 1,1,1              h,h2, h3  Ξ 1,r, rsinθ          h,h2, h3  Ξ 1,r,1       
 
e1,   e2   e3   Ξ i,  j,  k           e1, e2, e3  Ξ  r, θ, φ             e1, e2, e3 Ξ  r, φ, z          
 

 u1,u2,u3  Ξ x,y,z           u1,u2,u3  Ξ r, θ, φ              u1,u2,u3  Ξ r,φ,z               
 

In General:  
                   
       1      ∂t    e1       1     ∂t   e2         1      ∂t  e3  
1) ∇t  =     h1    ∂u1       +   h2     ∂u2     +       h3    ∂u3       

  

                        1            ∂   ( A1h2h3)       ∂    ( A2h3h1)        ∂   ( A3h1h2) 
2) ∇. A =  h1h2h3    ∂u1                     +    ∂u2                  +  ∂u3          
 
3)   ∇ x A  =  1                
                  h1h2h3         h1e1       h2e2        h3e3  
                                  ∂          ∂             ∂ 
                                 ∂u1           ∂u2           ∂u3 

                                                   A1h1       A2h2         A3h3                           
 
 
  
                   1           ∂        h2h3       ∂t         +  ∂       h3h1     ∂t         +  ∂         h1h2      ∂t 

4) ∇2t   =  h1h2h3      ∂u1           h1           ∂u1                  ∂u2           h2        ∂u2                 ∂u3             h3         ∂u3 
 

                      
Let:   A   =  A1 i  + A2  j  + A3 k              Cartesian system 
     
             = A1 er + A2 eθ + A3 eφ              Spherical system 
 
   = A1 er + A2 eφ + A3 ez              Cylindrical 
 

In Cartesian system: 
                   
1) ∇t  = ∂t  i  +  ∂t  j    ∂t  k 
  ∂x         ∂y      ∂z      
  
2) ∇ . A  =  ∂A1   +  ∂A2  +  ∂A3 

         ∂x         ∂y       ∂z  
                     
3) ∇ x A  =   i            j          k  
                                                       
                   ∂          ∂        ∂   
                  ∂x         ∂y       ∂z 
                                                      
                   A1         A2        A3           
 
4) ∇2t  =  ∂2t  + ∂2t   + ∂2t 
               ∂x2     ∂y2     ∂ z2 
 
In Spherical system:  
             
1) ∇t   =  ∂t     r  + 1   ∂t     θ  +  1       ∂t     φ  
              ∂r            r   ∂θ           r sinθ   ∂φ  
                    1           ∂    ( A1 r2 sin θ) + ∂  ( A2 r sin θ)  + ∂    (A3r)  
2) ∇ . A  =  r2 sinθ      ∂r                        ∂θ                       ∂φ                      
 
 
 
 
                     1          
3)  ∇ x A = r2 sinθ      r       rθ        r sinθφ   
                               ∂       ∂             ∂    
                               ∂r      ∂θ           ∂φ 
                                A1    rA2        r sinθ A3             

 



ACE      ::  11  ::     ACE  

 

 

 
4)  ∇2 t  =     1             ∂      r2 sin θ   ∂t           + ∂       r sinθ      ∂t     + ∂          r          ∂t 
       r2 sinθ       ∂r                   ∂r             ∂θ         r          ∂θ       ∂φ        r sinθ    ∂φ   
 
  In Cylindrical system: 
                       
1) ∇t  =   ∂t    r  +  1      ∂t   φ  +  ∂t    z       
               ∂r            r      ∂φ          ∂z 
                                            

2) ∇ . A  =   1    ∂   (A1r) +  ∂    A2 +  ∂    (A3r)             
                   r    ∂r              ∂φ           ∂z 
 
3) ∇ x A   =  1           
                    r          r      rφ         z 
                               ∂      ∂          ∂ 
                               ∂r     ∂φ        ∂z 
                               A1    rA2        A3          

 

 
4)  ∇2 t  =     1             ∂      r    ∂t         + ∂         1      ∂t         +  ∂      r    ∂t 
          r            ∂r             ∂r           ∂φ         r      ∂φ            ∂z          ∂z 
 

OBJECTIVES 
 
        One Mark Questions
 
1) If the vectors A  and B    are conservative then   ( Engg.Services,1993) 
 a) A x B  is solenoidal   b) A x B is conservative 
 c) A + B is solenoidal      d) A – B is solenoidal 
 
2) The value of   d.l along a circular radius of 2 units is     ( IES, 93 )     
 a) zero  b) 2∏  c) 4∏  d) 8∏   

∫  

 

3) which of the following relations is correct?       (BEL, 95) 
 a) ∇ x (AB) =  ∇A x B – A.∇B  b) ∇ . (AB)  = ∇A.B + A .∇B 
 c) ∇ (AB)  = A . ∇B + B. ∇A  d) all the three 
 

4) ∇ . (∇ x A) is equal to           (BEL, 95) 
 a) 0  b) 1  c) ∞  d) none of these 
 

5) Given points A(2,3,-1) and B(4, -500,2) find the distance from A to B 
  a) 3.74  b) 4.47  c) 16.7  d) 6.79 

 

6) Find the nature of the given vector field defined by A = 30 i   - 2xy j  +  5xz2  k 
      a) Neither Solinoidal nor irrotational   b) Solinoidal & irrotational 
 c) Only Solinoidal    d) Only irrotational 

 

7) Find the nature of given vector field defined by A = yz i + zx j + xy k 
      a) Neither Solinoidal nor irrotational   b) Solinoidal & irrotational 
 c) Only Solinoidal    d) Only irrotational 

 

8) A vector field is given by A  = 3xy i  - y2  j .  Find ∫c A .dl . where  ‘c’ is the curve  y = 2x2  in 
the x-y plane from (0,0) to (1,2) 

 a) -9/2  b) 7/6   c) -7/6   d) 2/3     
 
 
 

9) Find the laplacian of the scalar function v = (cosφ)/r (cylindrical system). 
      a) 5  b) 0   c) 7/6   d) 8 
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 Two mark Questions  
 

 
10)  Find ∇ ( 1/r  ) , where r   =  x i   + y  j  + z  k 

                            
a) r        b)  0   c)   -r     d) r2  r              

r2                                             r2   
                                                                                                             
11) Find the line integral of the vector function  A  =  x  i   +  x2 y  j  +  y2x   k  around a square  
      contour  ABCD in the  x-y plane as shown. 

                                            
 
 
                                                       (0,2,0) 
                                ( 0,0,0) A              D              
       
                      (2,0,0) B                        
                                                C (2,2,0)  
                                              
 
   a) 0  b) 10   c) -1   d) 8 
       

12) For the vector function  A  = xy2  i  +  yz2  j  + 2 xz  k, calculate ∫c A  . dl   Where  c  is the     
      straight line joining points (0,0,0)  to (1,2,3) 
      a) 2π   b) 8π    c) 16   d) 13 
 

 13) A Circle   of  radius 2 units is centered at the origin and lies on the YZ-plane. If   
        A = 3y2 i + 4z j + 6y k,  find the line integral ∫c  A .dl. Where C is the circumference of the circle. 
        a) π   b) 8π   c) 0   d) π/3  
 

14) Represent point  P (0,1,1)m given in Cartesian co-ordinate system, in spherical co-ordinates . 
      a) ( 1, π/3, π)    b) (√ 2  , π/4, π)     c) (√ 2  , -π/4, π)   d) (√ 2 ,  π/4, -π )     

                                                                                          
15) Find  ∫∫ s (∇x A ) . da   where  A   =  y  i  -  x  j    for the hemispherical surface  

Z

X 

Y

x2 + y2 + z2 = b2 ;  z ≥ 0  
 

 
         a) -2 π b2     
 
         b) 2π    
 
         c) -2πb   
 
         d) 2 πb2    

                                                                     

Z

Y

 X
 
 
 

Key:  1) a  2) a  3) d  4) a  5) d  6) a  7) b  8) c 9) b  10) c  11) d   
        12) c      13) b    14) b    15) a 
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TOPIC – 2 : ELECTRIC FIELD INTENSITY                   E M F                       
  
 Electrostatics is a science that deals with the charges at rest. Static charges produce electric 
field. 
 
 In electromagnetic theory there is a fundamental problem with regard to the force between the 
electric charges. Let us start our study with an introduction of coulomb’s law 
 
Coulomb’s Law:  

Q2 Q1

 
                                                                       

 
                       

This law states that considering two point charges separated by a distance, the force of 
attraction (or) repulsion is directly proportional to the product of the magnitudes and inversely 
proportional to the square of the distance between them. 

 
 
 
 
 
 
 
 
Force acting on Q1  due to Q2,  F12 =  
 
 
Force acting on Q2 due to Q1, F21   = 
 
This law is an imperial law and difficult to understand how exactly a force is communicated 

between them. Michel Faraday gives a satisfactory explanation of coulomb’s law by introducing the 
concept of electric field. 

 

According to Faraday, Q1 experiences a force because it is placed in the electric field of Q2. 
And Q2 experiences a force because it is placed in the electric field of Q1. 

 

Concept Of Electric Field: 
 
 An electric field is said to exist at a particular point, if a test charge placed at that point 
experiences a force. 
 
 If ‘q’ is the test charge and F  is the force experienced by the test charge, then the force per 
unit test charge is known as Electric field intensity. Expressed in N/C or V/m 
 
 
 
 
ELECTRIC FIELD DUE TO A POINT CHARGE:  
 
                                                                                                                         r 
 
 
 
 
Consider a point charge of ‘+Q’ c at origin. In order to find electric field intensity at point of 
observation P, consider a Unit test Charge ‘q’ c at P. 

 
(Contd …13)  

 

d2 
F α |Q1| |Q2|

d2 
 |Q1| |Q2|

4π∈0

       1 F =

4π∈0d2

 |Q1| |Q2| BA

4π∈0d2

 |Q1| |Q2| AB

 

  E    =    F    
              q  

N/C (or) V/M

Z 
P q c

X

Y
+Qc 

BA F21F12 d
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 Therefore, the force experienced by the test charge is 
 

4π∈0r2

 |Q1| q   r F  =  
 
 

E  = 
q
 F       We know, 

 
 

4π∈0r2

     Q   r ∴E  = 
 
 
 
 
NOTE: Thus electric field intensity is independent of the amount of test charge. 
In Cartesian system: 
 

. r  
4π∈0r2

     Q 
F  = | r |

 
 
 

.
4π∈0(x2+y2+z2)3/2 

     Q 
F  = 

(x i + y j + z k)  
 
 
 
ELECTRIC FIELD DUE TO A POINT CHARGE LOCATED AT ANY GENERAL 
POSITION: 
 

A P
- QC 

+ QC 

PA 

     Q 
 AP ∴E  = 

4π∈0(AP)2 

     Q 
 PA ∴E  = 

4π∈0(PA)2 

 
 
 
 
 
 
 
 Electric field is always directed away from the point charge towards the point of 
observation(P), if it is a positive charge. 
 
 Similarly, electric field is directed away from the point of observation towards the point 
charge, if it is a negative charge. 
 
PRINCIPLE OF SUPERPOSITION: 
 The principle of superposition says that electric field due to any charge is unaffected by the 
presence of other charges. 
 
 In a system of discrete charges the net electric field is obtained by the vectorically adding up 
the individual electric fields. 
 

E3 

E2 

E1  
 
 
 
 
 
 
 Net electric field intensity  E = E1 + E2 + E3 +…….. 
 
 
 

(Contd …14)  
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Electric field due to continuous charges distribution: 
 
 Continuous charge distribution is categorized into 3 types. 
 
 
a) Line charge distribution: 
 If the charge is continuously distributed along the line with line charge density “ρL” c/m, it is 
called line charge distribution. 
  
b) Surface Charge Distribution: 
 If the charge is continuously distributed over a surface with surface charge density “ρs “ c/m2, 
it is called surface charge distribution. 
 
c) Volume Charge Distribution:  
 If the charge is continuously distributed over a volume with volume charge density “ρv “ 
c/m3, it is called volume charge distribution. 
 
Electric field due to an infinite line charge: 
 
 
 
 
 
 
 
 
 

 
Consider an infinite line charge with a line charge density ρL  c/m placed along the z-aixs. Let the 
point of observation ‘P’ be on x-y plane. 
 
 Net electric field at P, 
 
 
Electric field due to infinite Line charge located at any general position. 

 
 
 
 
 
 

 
Electric field due to a finite Line charge(2L) along the perpendicular bisector. 
 
 
 
 
 
 
 
 
 
 
 
 

(Contd …15)  
 
 

2π∈0r
    ρL   r E  = 

dEB 

dEA 

ra =√r2+z2 

θr

A

P 

dz

X
z

z

dz

B

Z ρL  c/m 

Y

dEB 

dEA 

ra =√r2+z2 

θ 

r

A

P 

dz

X

Z

L

L

dz

B

Y

ρL  c/m

2π∈0r 
    ρL        

  r E  = √L2 + r2 
    L 

N 

P 

ρL c/m

2π∈0NP 
    ρL          

 NP, E at P = if it is a +ve line charge.i) 

2π∈0NP 
    ρL  

 PN, E at P = if it is a -ve line charge.ii) 
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Electric field due to a finite line charge located at any general position. 

(90-θ)
(90-θ) 

o

θ

α

P

A

B

d

β

ρL c/m 

dq

dEv

dE

dEH 
x

   
 
 
 
 
 

 
Electric field due to a finite line charge 
   

                       (OA ≠ OB) 
 

  

 
 
 
 
 
 
 

 
 
 
 
Electric field due to Rectangular line charge along it axis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(Contd …16)  

 
 
 

N 

P

B

2π∈0NP 
    ρL        .  

 NP,E at P = if it is a +ve line charge.
i) 

2π∈0NP 
    ρL        .  

 PN,E at P = if it is a -ve line charge.
ii) 

√BN2 +NP2
   BN 

√BN2 +NP2
   BN 

L c/mρ

A 

4π∈0d 
    ρL       

ii)   EV  = (sinβ – sinα)

4π∈0d 
    ρL       

 i)   E   = H
(cosα – cos  )  β

iii)   Net electric field intensity, E =  √E2
H + E2

V 

iv)   If ‘O’ is the mid point, β=(180-α). As line    
       tends to infinity, α 0, β π Ev = 0

2π∈0d 
    ρL       

 E  = 
op 

X 

M

Z

dEAB
dECDdEBC 

P

β
αα

β 

A 

D 

B

C

N

a

d

2a 
R 

dEDA

Q

 2b

ρL c/m

Y 

Eat P = EAB + ECD + EBC  + EDA 

= 2 [ EAB + EBC ]

 

       E =      ρ d 
      πε 0 √ a2 +b2+d2      K 

L         .    a          +        b 
      b2+d2            a2+d2
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Corollary:1  If it is a square line charge a=b 
 

  E  =  2ρLda     .   
       πεo√2a2+d2 . (a2+d2)     K 

 
 
 
Corollary:2 If d=0 i.e. the electric field at orgin 

 
   E = 0 

  

 
 
Electric field due to a circular line charge along its axis:- 
 

 r b

X
Adl 

Bdl

Y

ρL c/m

 a o dφ 

z

Z 

P 

dEA dEB 

ra 

 
 
 
 
 
 
 
 
 
 
 
 
 Consider two diametrically opposite elementary displacements located at A & B. Let point of 
observation ‘P’ be along ‘Z’ axis. 
 

                                       
    Eat P =      ρL az         . z 
                2εo(a2+z2)3/2  

 
 
 
 
 
 
Electric field due to an infinite charge sheet: 
 
 
 
 
 
 
 
 
 
 
 
 Consider two diametrically opposite elementary surface charges located at A & B. Let point 
of observation ‘P’ be along Z axis. 
 
 
 
 
 The electric field due to the surface charge sheet is independent of the distance of the point of 
observation (P) from the surface charge sheet. It has a constant magnitude equal to ρs/2ε0 and has a 
direction normal to the surface charge sheet. 
 

 The field direction is away from the surface charge sheet towards the point of observation if it 
is a +ve charge sheet. 

(Contd …17)  
 
 

         ρs   .  Z 

 E =  2εo  

Z

r b

dEB 

ρs c/m2

dφ

Z 
P 

ra 

dEA

 

x

YB

da 

r A
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Electric field due to a circular disc along its axis:- 
 
 Z
 
 
 
 
 
 
 
 
 
 Consider two diametrically opposite elemental surface charges located at A & B. Let point of 
observation ‘P’ be along the z- axis. 
 
 
 
 
 
Gauss’s Law: 
 
 
 
 
 
 
 
 Let us consider a point charge of ‘+Q’C at origin. Consider a closed surface.  
 

The electric field at any point over the closed surface 
  E = (Q / 4πε0r2) . r 
 Differential area, da = r2Sinθdθdφ r 
               π            2π  
  ∫∫ E . da  =     Q  .    r2 ∫ Sinθ dθ ∫ dφ 
             s       4πε0r2      0              0 
 
   ∫∫ E . da  = (Q/ε0) 
   s 
 Though the above result is deduced with respect to a spherical closed surface enclosed a point 
charge, it is a general result applicable for any closed surface enclosing any charge in any form. 
 
   ∫∫  E . da   =   (1/ε0) × Qenclosed = (1/ε0) ∫ ρv dv 
       s                  v 
     
         Gauss law in integral form (or) Maxwell’s 1st equation 
 Using divergence theorem, 
  ∫ (∇ . E) dv   =   (1/ε0) ∫ ρv dv 
  v              v 
     
  ∴      point form of Gauss law 
 
 
 
 
 

 
(Contd …18)  

 
 

ρS c/m2

Z

X
+Qc

Y
r

 

  Eat p =   ρs   (1 – z / √a2 + z2) z 
   2ε0 

 

  ∇ . E  =  (ρv / ε0) 

dφ

z 

dEA dEB 

B

X
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substitute D = εE 
    
      ∫∫ D . da = Qenclosed = ∫ ρv dz 
      s        v  
 
  (or)   
        Maxwell’s 1st Equation 

 

  ∇ . D  =  ρv  
 
Statement:- 
 Surface integral of normal component of electric field Vector is equal to (1/εo) times charge 
enclosed. 
    (or) 
 Surface integral of normal component of electric flux density vector is equal to the charge 
enclosed. 
 
Gaussian Surface: 
 Gauss’s law is very useful to find out electric field intensity. To find we construct an 
imaginary surface called “Gaussian Surface”  
 
 The electric field must be uniform at every point on this surface. It must be normal to the 
surface considered. 
 

OBJECTIVES 
 

 One mark Questions  
 
1) Inside a hollow conducting sphere       (Gate – 96)   

a) electric field is zero  
b) electric field is a non-zero constant 
c) Electric field changes with the magnitude of the charge given to the conductor. 
d) Electric field changes with  distance from the center of the sphere 

 
2) A metal sphere with 1m radius and a surface charge density of 10 c/m2 is        (Gate – 96) 
     enclosed in a curve of 10m side. The total outward electric displacement normal to the surface of  
     the cube is   
     a) 40π coulombs  b) 10πcoulombs c) 5 coulombs  d) none   
 

3) If V,W,Q stands for Voltage, energy and charge, then V can be expressed as  (Gate – 96) 
      
     a)    b)   c)   d) 
 
4) In the infinite plane, y=6m, there exists a uniform  surface charge density of   (Gate – 95)  
     (1/600π) μ c/m2. The associated electric field strength is 
     
     a) 30 i  V/m  b) 30 j V/m  c) 30 kv/m  d) 60 J v/m 
 
5) The electric field strength at a distance point, P due to a point charge, +q, located at the origin, is     
     100μV/m. If the point charge is now enclosed by a perfect conducting metal sheet sphere whose  
     center is at the origin, then the electric field strength at the point , P outside the sphere bcomes 
     a) zero   b) 100 μ V/m  c) –100 μV/m  d) 50 μV/m 
 
6) Copper behaves as a          (Gate – 95) 

a) Conductor always 
b) Conductor or dielectric depends  on the applied electric field strength 
c) Conductor or dielectric depends on the frequency 
d) Conductor or dielectric depends on the electric current density. 

(Contd …19)  
 
 

V= dq 
      dw  

V= dw
     dq  

dV= dw dV= dq 
        dw        dq  
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7)  Given the potential function in free space to be v(x) = 50x2+ 50y2 + 50z2 volts, the   (Gate – 01) 
     magnitude (in v/m) and the direction of electric field at point (1, -1,1), where  the dimensions are  
     in meters, are  

a) 100; (i+j+k)   b) 100/√3; (i-j+k) 
c) 100/√3; [(-i +j-k)/√3]  d) 100/√3; [(-i –j –k)/√3] 

 
8) In a uniform electric field, field lines and equipotentials     (Gate- 94)       
      a) are parallel to one another   b) intersect at 45° 
      c) intersect at 30°     d) are orthogonal 
 
9) When a charge is given to a conductor       (Gate –94) 

a) It distributes uniforming all over the surface      b) It distributes uniformly all over the volume 
b) It distributes on the surface, inversely proportional to the radius of curvature 
c) It stays where it was placed. 

 
10) The mks unit of electric field E is        (IETE) 

a) Volt  b) volt/second  c) volt/metre  d) ampere/metre 
 
11) Unit of displacement density is 
      a) c/m   b) c/m2   c) Newton  d) Maxwell’s equation 
 
12) Two infinite parallel metal plates are charged with equal surface charge density of the same  
      polarity. The electric field in the gap b/w the plates is  

a) The same as that produced by one plate b) Double of the field produced by one plate 
b) Dependent on coordinates of the field point d) Zero 

 
13) Three concentric spherical shells of Radii R1, R2,R3(R1<R2<R3) carry charges –1,-2,and 4  
      coulombs, respectively. The charge in coulombs on the inner and outersurfaces respectively, of  
      the outermost shell is.         (IES – 95) 
      a) 0 and 4   b) 3 and 1  c) –3 and 7  d) –2 and 6 
 
14) A positive charge of ‘Q’ coulombs is located at point A(0,0,3) and a negative charge &  
      magnitude Q coulomb is located at point B (0,0,-3). The electric field intensity at point c(4,0,0) is  
      in the  
      a) negative X-direction    b) negative Z-direction  
      c) positive  X-direction    d) positive  Z-direction 
 
15) The force between two point charges of 1nc each with a 1mm separation in air is (IES- 01) 
      a) 9 x 10–3 N  b) 9 x 10-6N  c) 9 x 10-9N  d)9 x 10-12N 
 

16) Two charges of equal magnitudes are separated by some distance. If the charges are increased by  
      10%; to get the same force b/w them, their separation must be 

a) increased by 21%   b) increased by 10% 
c) decreased by 10%   d) non of the above is correct 

 
 Two mark Questions  

 
 
 
Common data for Q. No. 17, 18 & 19 

 A small isolated conducting sphere of radius r1 is charged with +Qc. Surrounding this sphere 
and concentric with it is a conduction spherical cell, which posses no net charge. The inner radius of 
the shell is r2, and outer radius r3. All non-conducting space is air. 
 

17) The electric field distribution from 0 to r1 will be  
      a)zero   b) same  c)increases  d)decreases 

 
 
 

(Contd …20)  
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18) The electric field from r1 to r2 will be  
      a) zero    b) same   c)decreases  d) increases 
 
19) The electric field from r2 to r3 will be  
      a) same   b) zero   c) decreasing   d) increasing 
 
 
 
Common data for Q. No. 20 & 21 

 Infinite surface charge sheets are placed along the Y-axis with surface charge density +ρs 
c/m2 and -ρs c/m2 respectively. 
 

20) The electric field intensity between the sheets will be 
      a) zero   b)  ρs   j   c) ρs  -j   d) ρs j 
           2ε0        ε0       ε0   
 

21) The electric field intensity outside the sheets will be 
      a) zero   b)  ρs   j   c) ρs  -j   d) ρs j 
           2ε0        ε0       ε0 
 
 
 
Common data for Q. No. 22 & 23 

 Infinite charges are placed along the X – axis at x = 1, 2, 3, …….. ∞ 
          Z 
 
                 X 
          0 1     2      3      4 …………∞  
              Y 
 
22) An infinite number of charges, each equal to ‘Q’ c, the electric field at the point x = 0 due to  
      these charges will be 
      a) Q   b) 2Q / 3  c) 4Q/3  d) 4Q/5 
 
23) The electric field at x = 0, when the alternate charges are of opposite in nature, will be 
    a) 4Q/3   b) 4Q/5  c) 1.5Q  d) 3Q 
 
 
 
The spherical surfaces r = 1, 2 & 3 carry surface charge densities of 20 nc/m2, -9 nc/m2 and 2nc/m2 

Common data for Linked answer 

respectively. 

 r =1 r=2 

r=3 

      
 
 
 
 
 
 
24) How much electric flux leaves the surface at r = 5 ? 
      a) 2π × 10-3  b) 8π   c) 3π × 10-9  d) 8π × 10-9 
 
25) Find electric flux density at P(1, -1, 2) 
 a) 8.83 × 10-9 r  b) 3.3 × 10-10 r  c) 3.8 × 10-3 r   d) 40 × 10-9 r 
 

Key: 
 

1. a   2. a 3. b 4. c 5. c 6.a 7. c   8. d  9. a 10. c 11. b 12. d 13. b  
 
14. b  15.a 16. b 17. a 18. c 19. b 20. d 21. a 22. c 23. b 24. d 25. b 
 

(Contd …21)  
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ACE  EDUCATIONAL  ACADEMY 
 

TOPIC – 3: ELECTRIC POTENTIAL, WORK & ENERGY             E M F                       
  
Electric Potential: Z

r(b)

r(a)

b

Y

a

+Qc

X

pr

 
 
   
 
 
 
 
 
 Consider +QC of charge at origin. 
Let the point of observation is at a distance ‘r’ from the origin on the open path ab. 
 We know, 
   Eat p = (Q / 4πε0r2) . r 
 
 Displacement vector dl = (dr) r + (rdθ) θ + (rsinθdφ) φ 
 

∴     b 
   ∫  E . dl  =  (Q /4πε0)[1/r(a) – 1/r(b)] 
   a 

 
 
 
 The integral E . dl is independent of the open path and depends only on the starting and 
ending point. Now let the starting point be replaced by a reference point (θ) and the ending point be 
replaced by the point of observation (p). 
             p 
 The quantity   ∫  E . dl  attached with a ‘negative’ sign is known as electric potential at the  
             θ   
point of observation p. 
 
 ∴  

       p  
    V(p) = - ∫  E . dl 
       θ   

 
 
Note: For finite charge distribution, ‘infinity’ is recommended as the reference point and for “infinite 
charge distribution” other than infinity can be assumed as the reference point. 
 
Potential difference between two points: 
   

          A              B 
   V(A) – V(B) =  – ∫  E . dl = ∫ E . dl 
          B            A  

 
  
 
 
Relation between electric potential and Electric field (V & E): 
  We know that,    B       
  V(A) – V(B) =  ∫  E . dl --- (1)   
     A 
 The fundamental theorem of gradient, 
     B 
  V(B) – V(A) = ∫ (∇V) . dl 
    A 
        B  
   V(A) – V(B) =  - ∫ (∇V) . dl --- (2) 
       A 
 

(Contd …22)  
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 Compare (1) & (2) 
    

r2 

r3 

 
 
 i) Taking ‘curl’ on both sides 
  ∇ × E = ∇ × (-∇V) 
   
  ∴       Maxwell’s 3rd Equation  
   
ii) Taking ‘divergence’ on both sides 
  ∇ . E = ∇.(-∇V) 
            = ∇2V ≠ 0 
 
  ∴  

 

  E = - ∇V 

 

  ∇ × E  = 0 

 

  ∇ . E ≠ 0 
 
 ∴ Therefore, an electrostatic field is irrotational (or) 
conservative but not solenoidal. 

r

p

+QC

Z 
 
Electric potential due to a point charge (Absolute potential): 
  We know,          p 
  V(p) = - ∫ E . dl 

Y     θ 
  Due to finite charge, replace reference point θ with infinity 
(∞). 
     r X
   V(p) = - ∫  (Q / 4πε0r2) . dr 
                ∞ 
 

 

  V(p) = Q / 4πε0r    ∴ 
 
 
Electric potential due to a discrete charges: 

Q3

Q2

Q1

p
r1  

 V(p) = V(Q1) + V(Q2) + V(Q3) + …… 
 
          = Q / 4πε0r1 + Q / 4πε0r2 + ……. 
 
Electric Potential due to a continuous charge distribution: 
  V(p) = ∫ (ρL dl) / 4πε0r  for line charge distribution 
 
         = ∫∫ (ρs da) / 4πε0r  for surface charge distribution 
   s 
  
          = ∫ (ρv dv) / 4πε0r  for volume charge distribution 
             v      
 

ρL c/m
ara

rb

Z 

0 

Electric potential due to an infinite line charge distribution: 
 
      Consider an infinite line charge placed along the Z – axis. b
 

∴ Electric potential difference, 
 

Y

    ∴      
 

  V = (ρL / 2πε0) ln (rb/ra)  
 X 
 

(Contd …23)  
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Electric potential due to a charged ring: 
   
 ∴ 
         
 
 
  where  
 
 
Potential due to a charged disc: 
 
 Electric potential at p, 
 
 
  ∴ 
 
 
i) Potential at the centre of the disc, 
 substitute h = 0 
 
  ∴ 
 
 
Poisson’s equation and Laplace’s equation:  
  From the differential form of Gauss law, 
  ∇ . E = ρ / ε0 --- (1) 
 But, 
  E = -∇V --- (2) 
 Substitute, 
  ∇.(-∇V) = ρ / ε0 
 
 ∴    ⇒ Poisson’s equation 
 
For a charge free region i.e., ρ = 0 
 
    ⇒ Laplace’s equation 
 
  Both these equations are effectively used to determine the potential and electric field 
distribution without knowledge of source charge distribution. 
 

Solution to Laplace’s equation in Cartesian Co – Ordinates: 
 

  Laplace equation, ∇2V = 0 
   ⇒ (∂2V / ∂x2) + (∂2V / ∂y2) + ∂2V / ∂Z2) = 0 
 

Case1: ‘V’ is a function of only ‘x’  
 
  ∴ 
 
Case2: ‘V’ is a function of only ‘y’ 
 
  ∴ 

 
Case3: ‘V’ is a function of only ‘z’  
 
  ∴ 
 

(Contd …24)  

 

  V = (ρLa) / (2ε0r) 

 

  r = √a2 + h2 

 

  V = (ρs / 2ε0)[√a2 + h2 – h]  

 

  V = (ρsa / 2ε0)   

 

  ∇2V = -ρ / ε0 

 

  ∇2V = 0 

 

  V = Ax + B 

 

  V = Ay + B 

 

  V = Az + B 

p

hr   ρL c/m 

dφ a
dl

ra 
ρs c/m2

ph 
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Solution of Laplace equation in spherical co – ordinates:  
   ∇2V = 0 
  ⇒ 1/r2Sinθ [ ∂/∂r(r2sinθ ∂V/∂r) + ∂/∂θ(Sinθ ∂V/∂θ) + ∂/∂φ[(1/Sinθ) ∂V/∂φ)] = 0 
 
Case1: ‘V’ is a function of ‘r’ only 
 
 ∴  

 

  V = -A / r + B 
 
 
Case2: ‘V’ is a function of ‘θ’ only 
  
 ∴    

a b

 
 
Case3: ‘V’ is a function of ‘φ’ only 
 
 ∴ 
 
 
Solution of Laplace equation in Cylindrical Co – ordinates: 
  ∇2 V = 0 
 
 ⇒ 1/r[1/∂r(r ∂V/∂r) + ∂/∂φ(1/r . ∂V/∂φ) + ∂/∂z(r ∂V/∂z)] = 0 
 
Case1: ‘V’ is a function of ‘r’ only 
 
 ∴   
 
 
Case2: ‘V’ is a function of ‘φ’ only 
 
 ∴   
 
 
Case3: ‘V’ is a function of ‘z’ only 
 
 ∴   

 

  V = A ln tan(θ/2) + B 

 

  V = Aφ  + B 

 

  V = A ln r + B 

 

  V = Aφ + B 

 

  V = Az + B 
 
 
Note:   Here A and B are arbitrary constants, whose values are determined by using appropriate 
boundary conditions. 
 
  q

F Fa 
+
+
+

Work Done: 
 –

–
–

   
 
 
 A charge ‘q’ kept in the electric field experiences a force in the direction of electric field. F is 
the force experienced by the charge ‘q’. Fa is the force applied in opposite direction. If the magnitude 
of Fa is equal to F, the charge remains in equilibrium. If Fa is slightly greater than F, the charge can 
be moved from point a to point b. The small work done to move the charge ‘q’ by a distance ‘dl’ is 
Fa.dl. Total work done in moving the charge from a to b can be obtained. 
 
 

(Contd …25)  
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  Work done = ∫ Fa . dl  Where Fa = -F 
       b    b 
   = ∫ Fa . dl  =  -q ∫  E . dl [∵   F = Eq] 
      a  a 
 
  ∴           b  

 Work done  =  -q ∫ E . dl 
        a 

 
 
 
Energy: If point ‘a’ is replaced by the reference point ‘θ’ and point ‘b’ is replaced by point of 
observation (p), then 
 
 
         p   
      Where V(p) = -∫ E . dl 
        θ 
 The above expression represents the energy because this amount of work done is stored in the 
form of electrostatic energy. 
 
Energy stored in a system of ‘n’ point charges: 
 Consider a system having ‘n’ number of point charges. 
 Energy stored in this system = ½ (V1Q1 + V2Q2 + …… + VnQn) 
 In compact form 
 
   
 
 
 

 
OBJECTIVES 

 
 

One Mark Questions 
 
1. A spherical conductor of radius ‘a’ with, charge ‘q’ is placed concentrically inside an uncharged   
    and unearthed spherical conducting shell of inner and outer radii r1 and r2 respectively. Taking  
    potential to be zero at infinity, the potential any point with in the shell (r1 < r < r2) will be 
    a) q / 4πε0r           (GATE’95) 
    b) q / 4πε0a        q 
    c) q / 4πε0r2      
    d) q / 4πε0r1  
 
 
2. Which of the following equation(s) is/are correct? 
    a) J = σE  b) ∇V = E  c) D = ∈E  d) all the above 
 
3. A point charge of +1nc is placed in a space with a permittivity of 8.85 × 10-12 F/m as shown. The  
    potential difference VPQ between two points P and Q at distance of 40mm and 20mm respectively  
    from the point charge is          (GATE’03) 
    a) 0.22 KV         20mm              
    b) – 225 V   
    c) – 2.24 KV   
    d) 15 V            1nc         40mm  
 
 

(Contd …26)  
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4. One volt equals          (BEL’95) 
    a) one Joule  b) One Joule / Coulomb c) One Coulomb / Joule d) None 
 
5. Equation ∇2V = -ρ/∈ is called the        (IIT) 
    a) Poisson’s equation b) Laplace equation c) Continuity equation d) None 
 
6. Two point charges Q and –Q are located on two opposite corners of a square as shown. If the  
    potential at the corner A is taken as 1V, then the potential at B, the centre of the square will be 
    a) zero     Q   A   (IES’93) 
    b) 1/√2 V      
    c) 1 V 
    d) √2 V 
         -Q  

 
           B 

 
7. The potential inside a charged hollow sphere is 
    a) zero b) same as that on the surface  c) less than that on the surface d) none  
 
8. Two spheres of radii ‘r1’ and ‘r2’ are connected by a conducting wire. Each of the spheres has been  
    given a charge Q. Now,    
    a) larger sphere will have greater potential  b) larger sphere will have smaller potential 
    c) both the spheres will have same potential d) smaller sphere will have zero potential 
 
9. Potential of a sphere is given as 
    a) Q / 4πε0r   b) Q / πε0r  c) Q / 4πε0r2  d) Q2 / 4πε0r2 
 
10. A sphere of radii 1m can attain a maximum potential of 
      a) 3 × 106 V   b) 30 KV  c) 1000 V  d) 3 KV 
 
11. Joule / Coulomb is the unit of 
 a) electric field intensity  b) potential  c) charge  d) None 
 
 

Two Mark Questions 
 

 
12.  

4

2

1
0

- Q +Q 
 
 
 
    
 An infinite number of concentric rings carry a charge Q each alternately positive and 
negative. Their radii are 1,2,4,8,…. metres in geometric progression as shown. The potential at the 
centre of the rings will be         (IES’92)
  
      a) zero  b) Q / 12πε0   c) Q / 8πε0   d) Q / 6πε0 
 
13. Find the work involved in moving a charge of 1C from (6,8,-10) to (3,4,-5) along a straight line in  
  the field E = -xi + yj -  zk. 
  a) 24.5 Joules  b) 25.5 Joules  c) 19 Joules  d) zero 
 
14. Find the work done in moving a point charge 3 μc from (2,π, 0) to (4, π,0) in the field E = 105/r r  
  + 105 z z. 
 a) 0.207 Joules  b) 1.27 Joules  c) 0.8 Joules  d) zero 
 
15. Five equal point charges of zone are located x = 2,3,4,5 and 6 m. Find the potential at the origin. 
 a) 180 V   b) 183 V  c) 210 V  d) 261 V 
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16. A line charge of 10-9/2 c/m lies on the Z – axis. Find rab if ‘a’ is at (2,0,0) and b is at (4,0,0) 
  a) 2V   b) 4.24 V  c) 6.24 V  d) 8.24 V 
 
17. A point charge of 0.4 nc is located at (2,3,3) in Cartesian system. Find rab if A is (2,2,3) and B is  
 (-2,3,3). 
 a) 2.7 V   b) 3.6 V  c) 4.7 V  d) 8.1 V 
 
18. Determine the potential at (0,0,5) m caused by a total charge 10-8c distributed uniformly along a  
 disc of radius 5m lying in the Z = 0 plane and centered at the origin.   
 a) 12.2   b) 17 V  c) 14.8 V  d) 13.2 V 
 
19. 3 point charges of 1C, 2C and 3C are located at the corner of an equilateral triangle of 1m side  
 each. Find the energy stored in the system. 
 a) 9 / 4π∈0 Joules  b) 4π∈0 / 3 Joules c) 11 / 4π∈0 Joules d) 30 × 109 Joules 
 
20. If the potential is given by V = 5r2 where ‘r’ is distance from origin. How much charge is located  
 with in a sphere of 1m radius centered at the origin.  
 a) 90 ∈0   b) – 30∈0  c) 30 ∈0  d) –30 / ∈0 
 
 

Common data question 
 
A spherical shell of radius ‘a’ contains a total charge of Q0 uniformly distributed over its surface. 
  
21. Find the potential inside the spherical shell 
 a) Q0

2 / 4π   b) Q0 / 4π2ε0a  c) Q0 / 4πε0a  d) zero 
 
 
22. Find the potential outside the spherical shell 
 a) Q0

2 / 4π   b) Q0 / 4πε0a  c) zero  d) Q0 / 4πε0r 
 
 

Linked Question 
 
Two parallel infinite conducting plates separated by a distance ‘d’ along the X – axis have a potential 
V0 and zero respectively as shown. 
 

x = d
d

     
X x = 0 

 
 
23. Find the expression for voltage distribution 
 a) V = V0(1 + d/x)  b) V = V0(1 – x/d)  c) V = V0(1 – d/x)   d) 0 
 
24. Find the electric field intensity 
 a) (V0 / x) i  b) V0 i   c) (V0 / d) . i   d) (x / V0) . i  
 
 
Key: 
 
1.a  2.d 3.b 4.b 5.a 6.c 7.b 8.c 9.a 10.a 11.b 12.d 13.b  
 
14.a 15.d 16.c 17.a 18.c 19.c 20.b 21.c 22.d 23.b 24.c   
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ACE EDUCATIONAL ACADEMY 
 

TOPIC – 4: DIELECTRICS                 E M F                       
  
Polar and Non – Polar Dielectrics: 
 Dielectric is nothing but an insulator. It is capable of storing energy for a short duration. 
Dielectrics are classified as polar and non – polar type. 
 
Electric Dipole: Two equal and opposite charges separated by a small distance is called a dipole. 
 
Dipole Moment: Dipole moment is a product of charge and distance between charges. 
            +q 
 Dipole moment      p = q s              s 

θ 
β 

α 

             –q 
              E Applied  
  

   

– +– +

– +– + 
 
 
 
         Fig(1)             fig(2) 
  Polar Dielectric without Polar Dielectric with  
 applied electric field  applied Electric field 
 
Polar Dielectrics: The charges in the molecules of polar type have permanent displacement from 
each other. The molecules have permanent dipole moment. They are randomly oriented as shown in 
fig(1). Net dipole moment zero until an electric field is applied. 
 When an electric field is applied, the dipoles orient in a particular direction such that the 
induced electric field is in a direction opposite to the applied electric field. This can be seen in fig(2). 
 
Non – Polar Dielectrics: In non – polar dielectrics, the centres of positive and negative charges 
coincide each other. When non – polar dielectric is kept in the electric field, a small displacement 
takes place between the charges. 
 
Potential due to a dipole: Let us consider a physical dipole located on Z – axis and the point of 
observation P(r, θ, φ).           Z 
            ra  P(r,θ,φ) 
          +q       r 
               s       rb 
          -q  
 
 
It is required to determine the potential at ‘p’ which is at a distance ‘r’ m from the midpoint of the 
dipole. It is easy to handle this problem using spherical co – ordinates. 
 Potential at ‘p’ is the sum of potential values due to positive and negative charges. 
 Therefore, the potential at ‘p’ due to the physical dipole is given by 
  V(p) = V1 + V2                
           = q / (4πε0ra)  + (-q) / (4πε0rb)                 
 ∴ V(p) = q / (4πε0)[1/ra  - 1/rb]                   
                       

∴ V(p) = q/(4πε0)[(rb – ra) / rarb]                                   
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Case: When the point of observation is at a very large distance α = β = θ and ra = rb = r 
    rb – ra = BC     

β

θ
A

B

r
rb

raα

C 

  ∴    V(p) = q / (4πε0) [BC / rarb] 
       = q / (4πε0) [Scosθ / r2] [Q BC = S cosθ] +q 

s   
    ∴   [Q p = q S] 

 

  V(p) = (p cosθ) / (4πε0r2) 
-q  

 

   V(p) α 1/r2 
 
 
 
Electric field intensity due to a Dipole:  
 
 We know E = - ∇ V 
   
   ∴              in spherical system 
     

    

   E   = p / (4πε0 r3)[2cosθ r  +  sinθ θ] 

    ∴ 
 
Observations: 
  i) Potential due to an electric dipole V(p) ∝  1 / r2 
           ii) Electric field intensity due to an electric dipole   E  ∝  1/r3 
 
Polarization (P) 
  Some materials already contain the internal electric dipoles. When such  materials are 
subjected to an electric field these internal electric dipoles align themselves along the direction of 
applied electric field. 
 Many materials do not contain any internal electric dipoles. When such materials are 
subjected to an electric field, internal electric dipoles are generated and align themselves along the 
direction of applied electric field. 
  Qualitatively defined as production and / or alignment of internal electric dipoles. 
  Quantitatively defined as effective dipole moment per unit volume. 
     
   ∴ 
  
  units for polarization is coulomb / m2. 

 

    E  ∝  (1/r3) 

 

  P = p / dv 

 
Susceptibility(χ): 
  Susceptibility is one less than relative permittivity. 
  χ = εr – 1 
 Displacement density is directly proportional to electric field intensity. 
   D ∝ E 
    D = ε0 εr E ---- (1) 
 When a dielectric is kept in the electric field, a net dipole moment exist since the dipoles align 
in one particular direction in the case of polar dielectrics. Polarization density (p) is directly 
proportional to the applied electric field. 
  P = χ ε0 E ---- (2) 
 From (1) & (2) 
  P   =   χε0E 
  D        ε0εrE 
        =  χ / εr 
        = (εr – 1) / εr  [∵ χ = εr – 1] 
 
    

  P = [(εr – 1) / εr] . D   ∴ 
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Gauss’s Law for Dielectrics: 
 We know that differential form of Gauss law in free space. 
 
       Where ρf   free volume charge density. 
 
Consider a row of dipoles as shown. 

 

  ∇ . E  =  ρf / ε0 

 
 
 
 The positive charge is nullified by the negative charge near by (or) the head and tail gets 
cancelled throughout except at the beginning and end. In other words, a negative charge and a 
positive charge can be seen at the boundaries. This charge is called ‘Bound charges’. 
 
Gauss’s law is modified as follows. 
 
 
       Where ρb  bounded volume charge density 
 
Statement: Surface integral of normal component of electric field is equal to 1/∈0 times the sum of 
free charge and bound charge. 
 
        ∫∫  E . da  =  1/ε0 (Qf + Qb) 
         S  
           
   
  Point form of Gauss’s law is,   
 
 
Dielectric Boundary Conditions: 
  When flux lines flow through a single medium, they are continuous. When they flow through 
a boundary formed by two different types of dielectrics, they get refracted. This can be studied by 
using boundary conditions. Surface of glass board is glass air boundary. Surface of porcelain 
insulator is a porcelain air boundary. 
 
Boundary condition for Electric flux density vector (D): 
                Dn2 
           Pill Box            da 
                        D2 
        (2) εr2          θ2       Δh      charged sheet  
        (1) εr1    θ1    with density ρsf c/m2 
 
             D1 
               Dn1 
 
 Consider a boundary formed by two dielectrics as shown in the figure. An infinite charged 
sheet with charge density ρs c/m2 is placed at the boundary. The dielectric constants of the media 1 
and 2 are ∈r1 and ∈r2 respectively. θ1 is the angle of incidence. θ2 is the angle of emergence. Dn1 and 
Dn2 are the normal components of flux density vectors. 
 Consider a pill box at the boundary such that it encloses both the media. Apply Gauss’s law to 
the pill box under limiting condition Δh 0. 
    ∫∫  D . da   =   Qf enclosed 
       S 
 

     Dn2 ∫da – Dn1∫da  =  ρsf × A 
     Dn2A – Dn1A  =  ρsf A 
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  ∇ . E  = (ρf + ρb) / ε0 

 

 ∇ . D = ρf + ρb 
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  Dn2 – Dn1 = ρsf     ∴ 
 
 
Statement: Normal component of flux density vector is discontinuous by an amount equal to the 
charge density of the sheet. 
  If charged sheet is not present at the boundary, ρsf = 0. 
   

  Dn1  =  Dn2    ∴ 
 
 
Statement: Normal components of flux density vectors are equal. They are continuous at the 
boundary provided there is no charged sheet at the boundary. 
 
Boundary condition for Electric field intensity vector(E): 

D2

θ2 

Δl 

θ1 

θ2 
Et2

Et1

E2

E1

CD

A B

(1) εr1 
(2) εr2 Δh

  Second boundary condition deals with tangential  
component of electric field. E1 and E2 are the electric  
field intensities in the media 1 and 2 respectively.  
Et1 and Et2 are the tangential components of the electric  
field in media 1 and 2 respectively. 
 Consider the rectangular path ABCDA at the     
boundary such that it encloses both the media. 
 
 
  We know that static electric field is a conservative field. 
     ∫ E . dl  = 0 
 Apply this equation to the contour ABCDA under limiting condition Δh  0. 
  ∫ E . dl  +  ∫ E . dl  + ∫ E . dl  +  ∫ E . dl  = 0. 
           AB           BC          CD            DA 
As Δh 0, second and fourth terms tends to zero. 
   Et2 ∫ dl – Et1∫dl = 0 
   Et2 Δl – Et1 Δl = 0 
         

  Et1 = Et2   ∴ 
 
Statement: Tangential components of electric field intensity vector are equal and they are continuous 
at the interface.  
 

Relation between angle of incidence (θ1) and angle of emergence(θ2): 
                 Dn2 = D2 Cosθ2  
 Assume interface does not contain any surface charge                    E2 
Apply boundary condition for D,                
  Dn2 = Dn1  [Q ρsf = 0]        (2) εr2                     
   D2cosθ2 = D1 cosθ1          (1) εr1  E1t= E1sinθ1              E2t = E2Sinθ2 
   ε2E2cosθ2 = ε1E1cosθ1    ---- (1)       θ1 
Apply boundary condition for E,       D1 
  E2t = E1t               E1  
  E2sinθ2 = E1sinθ1 ---- (2)             Dn1 = D1 Cosθ1  
(2) ÷ (1) 
 E2sinθ2  = E1sinθ1 
         ε2E2cosθ2          ε1E1cosθ1 
 
 ∴  
 
If εr1, εr2 and angle of incidence are given, angle of emergence can be calculated using the above 
equation. 

  Tanθ1  =   εr1 
  Tanθ2       εr2  
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ACE EDUCATIONAL ACADEMY 
 

TOPIC – 5: CAPACITANCE                 E M F                       
  
 Capacitor is formed using two conducting media with an insulator in between them. 
 
 Capacitance is the property of a dielectric to store electrical energy. An electric field is 
present between the plates since a voltage is applied between them. The dielectric is subjected to 
electric stress and strain. Therefore some energy can be stored in the dielectric. Capacitance is similar 
to inertia. The speed of a vehicle cannot change suddenly due to inertia. Similarly voltage across 
capacitor cannot change suddenly. 
 
Capacitance of a parallel plate capacitor: 
 

 + + + + + +    x = d 
 

Electric field
 
- - - - - - - - -        x = 0 

 We know that,  c =  Q/v 
  
           =           

   | ∫ ρsda |                                                                                                                                 

                                                     |-∫ E.dl | 
                                            
            =       ρs (Area) 
            ∫  ρs    i . dx i     
                ε 
 
            =     ρs (A)  
         ρs    d                
                               ε    ∫  dx 
                                            o 
 
     = ρs (A)  
        ρs  x d     
        ε  
 
                                              where A = cross section area of plate 
 
 
Capacitance of parallel plate capacitor with two media 
 
 
 V = V1 + V2 
     = E1d1+ E2d2 
     =  (D/ε1) d1 + (D/ ε2) d2 
 
                 =  (Q/Aε1) d1 + (Q/Aε2)d2 
 
     
                  = Q/A              +    
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                  ε0A 
                              

C = 
              +  d1   d2  

 
 
Note:  If n number of dielectrics are present, the equation can be written as 
 
 
 
                                ∴  
 
  
 
 
Capacitance of Spherical capacitor: 
 Consider a Gaussian sphere.  
 Apply Gauss’s law 
  D.da = Qenclosed 
  D. 4πr2 = Q 
 
      ∴ E   =   Q/ 4πεor2   r 

 
 electric field exists only in the direction of  r 
       a                             a 
 we know,   v = - ∫   E. dl   =  - ∫     Q/4πεr2 . dr 
      b  b   
 
           =  Q/4πε  [1/a -  1/b]  
 
       Q = 4πε v ab  
       b – a 
 
 substitute  Q = CV 
 
  CV = 4πε v ab  
                       b – a 
 

C  = 4πε  ab  
                       b – a 
 
Capacitance of cylindrical capacitor (or) cable: 
 
       Consider a Gaussian cylinder (G). 
 Apply Gauss’s law 
  D.da = Qenclosed 
  D.2πrl = Q 
 
  E =   Q      r [∵ l = 1mt] 
          2πεr  
we know that,           a   
  V = - ∫  E.dr 
           b 
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           a   
      = -∫    Q     dr 
          b   2πεr  
      b         
      =   Q     [ ln r] 
          2πε  a 
 
       =    Q       [ lnb – lna]   
             2πε  
 
  V =   Q     ln (b/a) 
          2πε  
 

P
BA 

+ 

x d - x
(d-r) 

d

EA
EB 

Ref 

 Substitute  Q = CV  
      
          
    

 

      Note: To calculate the total capacitance, multiply with total length 
 

Capacitance of a 2-wire transmission line: 
 

Single phase transmission line is shown. Conductors A and B are 
uniformly charged with +ρL c/m and -ρL c/m respectively. Radius of 
each conductor is ‘r’ and spacing is ‘d’ meters. Consider a point ‘P’ at a 
distance ‘x’ meters from the reference. The distance between the wire B 
and the point P is (d-x). EA and EB are the electric field intensities due 
to wires A and B respectively. Direction of electric field is away from 
the positive charge or towards the negative charge. 
 
 
 
      F/m 
 
 
          Let C1 be the capacitance per conductor. 
 
  C = c|  x  c|   =  c| 

          c|  + c|             2 
 
   c|  =  2c 
 
     F/m/conductor 
       
 
Energy stored in capacitor: 
 we know that energy stored in ‘n’ point system, 
       n 

  W = 1/2  Σ  q v(pi) 
      i=1 
       = 1/2  ∫ (ρsda) v 
      s 
       = 1/2  ρs v ∫ da 
              s 
        = 1/2 x Q x V x a 
          a  
       = 1/2 QV         [∵ Q = CV] 

(Contd …35)  
 

   C =    πε 
          ln((d-r)/r) 

c|  =   2πε 
     ln ((d-r)/r) 
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          Joules W = 1/2  cv2   
 
 
 Energy density = Energy  
        Volume 
   = 1/2  cv2 
        A x d 
 
   = 1/2 x   1    x   εA   x  v2 
               Axd       d 
   = (1/2) ε (v/d)2   [∵v/d = E]  
   = 1/2 εE2 
   = 1/2 (εE) E 
   = 1/2 DE 
 
 D and E can be written as D.E since D & E are in same direction 
  ∴Energy density = 1/2  D.E 
   Energy     = 1/2  D.E x volume 
 
 

W = 1/2 ∫  D.E dv 
  v

  
    
 
 
Force of Attraction between plates: 
 

 

A 
- 
- 
- 
- 
- 

+ 
+ 
+ 
+ 
+ 

B
P1 P2

d dx

F

 Between the oppositely charged plates there is a force of 
attraction. F is an externally applied force to move the plate B from 
p1 to p2. The work done is stored in the form of energy in the 
additional volume Adx. 
 Work done = Additional energy 
  F dx = (Energy density) volume 
  F dx = ( 1/2  εE2) Adx 
       F = 1/2  εE2A Newtons 
  F/A = l/2 εE2 N/m2 
 
 ∴  

 Force /unit area = 1/2 εE2  
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ACE EDUCATIONAL ACADEMY 
 

TOPIC – 6: CURRENT DENSITY AND CONTINUITY EQUATION            E M F                        
 
Classification of currents: 
 For theoretical convenience currents can be classified into 3 types 

a) Line currents  b) Surface currents  c) Volume currents 
 
 

vΔt
B

A
Δl

Line Currents 
λ c/m 

 
 
 Motion of electric charges along a line represents a line current. Every line current is 
associated with a mobile line charge density λ c/m. An elementary segment Δl = V Δ t along the line 
current. The amount of mobile charge contained at any instant within the elementary segment is 
λ(VΔt). where ‘V’ is the velocity of the charges. 
 
 All these mobile charges coming out of segment in Δt seconds is called current. 
    I = λ(VΔt) 
               Δt 
 
 
       where λ = I / V = mobile line charge density 

 

   I = λ V 
 
 
 

B

D
CΔl⊥

VΔt

A
σ c/m2 

Surface Currents: 
 
 
 
 
 
 
 Flow of electric charges over a surface represents surface currents. Every surface current is 
associated with a mobile surface charge density σ c/m2.  
 
 Consider a surface current sheet with mobile surface charge density σ c/m2 and  an 
elementary rectangle ABCD. 
 
 The amount of mobile charges contained at any instant within the elementary rectangle is         
“σ Δl⊥(VΔt)”. All these mobile charges within the elementary rectangle coming out in ‘Δt’ seconds is   
 called current. 
 
   ΔI = σΔl⊥(VΔt) 
     Δt 
 
   ΔI = σ V Δl⊥ 
 
   ΔI   
   Δl⊥ 

= σV = K 

 
 
     , A/m 
      where K = surface current density, A/m 

 

  K = σV 
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Δa⊥
vΔt 

ρ c/m3 
Volume Currents: 
   
 
 
 
 Flow of electric charges over a volume represents volume currents. Every volume current is 
associated with a mobile volume charge density ρ c/m3. Considering an elementary cylinder within 
the volume current region, the amount of mobile charges contained at any instant is “ρ Δa⊥(V Δ t)”. 
 
 All these elementary mobile charges coming out of the elementary cylinder in ‘Δt’ seconds is 
called current. 
   ΔI = ρΔa⊥ (VΔt) 
    Δt 
 
   ΔI = ρVΔa⊥ 
 
    ΔI 
   Δa⊥  

= ρV = J 

 
  

∴ A/m2 
      Where J = Volume current density, A/m2 

  

  J  =  ρV   

 
Continuity Equation: ρ c/m3 

dv 

 
 Enclosing 

surface  
 
 
 Let us consider a region carrying volume currents. For convenience let the charges flow 
outward. The net outward current through the enclosing surface can be obtained as. 
 
 
   I  =  ∫∫  J . da   --- (1) [  from volume currents] 
           s  
 
 And also,  the rate of reduction of electric charges within the encloser. 
 
   = - d/dt ∫ ρ dv     --- (2) 
    V 
 
According to the law of conservation of charges the above two equations are equal 
 
   ∫∫  J . da = - d/dt ∫ ρ dv 
   s   V 
 
According to the fundamental theorem of divergence 
   ∫ (∇ . J) dv = - ∂/∂t ∫ ρ dv  [ only one variable] 
             V         V 
 
 Integration is done with respect to volume and differentiation is done with respect to time.  
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Therefore ∂/∂t can be taken inside the integral since the variables are different. 
 
   ∫ (∇ . J) dv = - ∫ (∂ρ / ∂t) dv 
   V                     V 
 
                 Maxwell’s 5th equation. 

 

  ∇ . J = - ∂ρ / ∂t 
 
 
The above equation is called continuity equation  or  Fifth Maxwell’s equation. 
Divergence of J gives net outflow of current per unit volume. 
Net overflow of current per unit volume is negative of time rate of charge per unit volume. The above 
equation is also called as law of conservation of charge. 
 
 The above equation explains continuity of current. According to law of conservation of 
charge, charge can be neither created nor destroyed. Some charge keeps flowing in the circuit. 
Existing charge cannot be destroyed and new charge cannot be created. 
 
Ohm’s Law: 

BA 

E

 J

 
 l 
 
 V

 
 Current flowing through a conductor is directly proportional to the potential difference across 
it, provided temperature is kept constant. 
 
   I ∝ V 
 The proportionality constant is conductance 
   I = GV 
 
     = V / R 
 
     =    V 
         ρl / A 
 
   I = VA / ρl 
 
    I      V       1 
   A      l        ρ  
    
      [1/ρ = σ] 

= × 

 

   J  =  σ E  
 
 The above equation is called point form  or  field form of Ohm’s law. 
 
Joule’s Law: 
 According to Joules law, whenever current flows through a conductor, heat energy is 
produced. This is proportional to I2, R and t. 
 
  Heat Energy ∝ I2Rt 
         Energy ∝ (I2Rt) / J1  Where J1 is called Joule’s constant. 
  We know that power = I2R = V2/R = VI 
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 Multiply and divide with volume 
  P = VI . Al / Al 
 
 Rearrange the terms, 
  P =  V      l  (Al) 
          l       A 

× 

 
 Substitute  E = V/l, J = I/A and volume = Al 
  ∴ P = EJ volume 
 
 EJ can be written as E.J since E and J are in the same direction 
   P = (E . J) volume 
 
 ∴       

  P = ∫ (E . J) dv  
        V  

  According to Joule’s law, energy dissipated per second is volume integral of dot product of 
the vectors E and J. 
 
Relaxation Time: 
 To study relaxation time we start with ohm’s law and equation of continuity. 
  J = σ E and ∇ . J = - (∂ρ / ∂t) 
  ∇ . σE = - (∂ρ / ∂t) 
  ∇ . ε σE = - (∂ρ / ∂t)   
        ε 
   
  

 σ 
∇ . D =   - ∂ρ 

    ∂t  ε 
  σ   ρ   +  ∂ρ   = 0     
  ε   ∂t 
     ∂ρ   +   σ   ρ   =  0 

   ∂t         ε  ∴ 
 
 
 ρ = ρ0 e-(σ/ε)t where ρ0 is charge density at t = 0. 
The charge density decays exponentially as time passes with time constant equal to ∈/σ seconds. 
This time constant is called relaxation time. 
 
Conductance – Capacitance Theorem: 
 G = Conductance, C = Capacitance 
 σ = Conductivity, ε = permittivity ρ = resistivity 
 
 According to conductance theorem, conductance of an insulated medium is equal to σ/∈ 
times the capacitance of the insulation provided between two conducting media. 
   G = (σ / ε) C 
We know that C = ∈A / l and R = ρl / A  ⇒ G = A / ρl = σA / l 
  ∴ G    =   σA 
      C         εA 
 
   

   G = (σ/ε) C  
 
This theorem is very useful to obtain the expression for conductance of the configuration if 
capacitance of that configuration is already known. Conductance can be obtained by multiplying 
capacitance expression with σ/∈. 
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Observation: 
 We know that I = ∫∫  J . da 
        s   
 Substitute ohm’s law J = σE 
 
    I = ∫∫  σE . da   (1) 
        s   
 According to Gauss law, χ = Q 
   ∫∫ D. da = Q 
   s 
   ∫∫  E . da   = Q / ε  (2) 
   s 
 Compare (1) and (2) 

 

  I = σ . (Q / ε) 
 
 
 
 
 Substitute I = V/R and Q = CV 
  V   =  σ . CV 
  R               ε 
   

       1  =  G  = σ    C 
       R            ε  

 
 
 
 
Duality: 
 If two equations are in similar form, they are said to be dual equations. 
 Duality means that it is possible to pass from one equation to another equation by suitable 
interchanges of dual quantities. 
 We know that the conductance of the dielectric between the plates is σA/l. Capacitance is 
εA/l. If we know the capacitance of configuration, conductance of that configuration can be obtained 
by merely replacing ε with σ. 
 For example capacitance of cylindrical capacitor is 
   C = [(2πε) / log(b/a)] 
 Conductance can be obtained by replacing ‘ε’ with ‘σ’. 
   ∴ G = [(2πσ) / log(b/a)] 
 similarly, 
  Conductance of spherical capacitor is,   C = (4πεab) / (b – a) 
 Conductance can be obtained by replacing ‘ε’ with ‘σ’. 
   ∴ G = (4πσab) / (b – a) 
 Therefore, ε and σ are dual quantities. 
 
Basic Properties of conductors: 
1) Electric field is zero inside a conductor. If there is a field inside, the charges experience a force and  
    they move outwards. Therefore, there is no charge inside. 
  Q = 0, D = 0 and E = 0 
2) The charges can only reside on the surface of the conductor and not inside a conductor. 
3) Conductor is an equipotential region. 
4) Electric field intensity at all points on the surface of a conductor must be normal to the surface. 
5) Electric charges located outside a conductor cannot produce an electric field inside a completely  
    closed cavity with in the conductor. 
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ACE EDUCATIONAL ACADEMY 
 
                

OBJECTIVES 
 

One Mark Questions 
 
1. The mica layer (εr = 7) in a parallel plate capacitor with an effective area of 120mm has a  
    damaged section equivalent to a hole of 0.5mm diameter. Which of the following would be  
    significantly affected by damage.     (GATE’91,EEE) 
    a) capacitance  b) charge  c) dielectric breakdown d) tan δ 
 
2. Which of the following equations represents the Gauss’ law in homogeneous isotropic medium? 
    a) ∫∫ D . ds  =  ∫∫∫ ρ dV b) V × H = D       c) ∇ . J + ρ = 0 d) ∇ . E = ρ/ε    (GATE’92,EEE) 
 
3. The line integral of the vector potential A around the boundary of a surface ‘S’ represents 
    a) flux through in the surface S  b) flux density in the surface S (GATE’93,EEE) 
    c) magnetic density    d) Current density 
 
4. When a charge is given to a conductor      (GATE’94,EEE) 
    a) it distributes uniformly all over the surface  
    b) it distributes uniformly all over the volume 
    c) it distributes on the surface, inversely proportional to the radius of curvature 
    d) it stays where it was placed 
 
5. Energy stored in a capacitor over a cycle, when excited by an a.c source is (GATE’97) 
    a) the same as that due to a d.c source of equivalent magnitude 
    b) half of that due to d.c source of equivalent magnitude 
    c) zero    d) none 
 
6. When the plate area of a parallel plate capacitor is increased keeping the capacitor voltage  
    constant, the force between the plates      (GATE’99) 
    a) increases  b) decreases  c) remains constant   
    d) may increase or decrease depending on the metal making up the plates 
 
7. The potential difference between the forces A and B of a uniformly polarized infinite slab shown  
    in figure.          (IES’93) A
    a) pd / ε0(ε - 1) p
    b) pd / ε0 ε      d
    c) pd / ε0 
    d) pd(ε + 1) / ε0 B
 
 
8. If n is the polarization vector and K is the direction of propagation of a plane electromagnetic  
    wave, then          (IES’93) 
    a) n = K   b) n = - K  c) n . K = 0  d) n × K = 0 
 
9. Consider the following statements regarding field boundary conditions:  (IES’95) 
       1. The tangential component of electric field is continuous across the boundary between two  
           dielectrics. 
       2. The tangential component of electric field at a dielectric – conductor boundary is non – zero 
       3. The discontinuity in the normal component of the flux density at a dielectric conductor  
           boundary is equal to the surface charge density on the conductor. 
       4. The normal component of the flux density is continuous across the charge free boundary  
           between two dielectrics. 
    Of these statements 
    a) 1,2 & 3 are correct      b) 2,3 & 4 are correct c) 1,2 & 4 are correct    d) 1,3 & 4 are correct 
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10. Consider the following statements associated with a parallel plate capacitor. (IES’95) 
  1. Capacitor is proportional to area of plates 
  2. Capacitance is inversely proportional to distance of separation of plates 
  3. The dielectric material is in a state of compression. 
 Of these statements 
 a) 1,2 & 3 are correct b) 1 & 2 are correct      c) 1 & 3 are correct      d) 2 & 3 are correct 
 
11. Two electric dipoles aligned parallel to each other and having the same axis exert a force F on  
      each other, when a distance ‘d’ apart. If the dipoles are at a distance ‘2d’ apart, then the mutual  
      force between them would be:        (IES’95) 
 a) F/2   b) F/4   c) F/8   d) F/16 
 
12. When a lossy capacitor with a dielectric of permittivity ε and conductivity σ operates at a  
  frequency ω, the loss tangent for the capacitor is given by    (IES’95) 
 a) ωσ / ε   b) ωε / σ  c) σ / ωε  d) σωε 
 
13. The properties of a medium are       (NTPC’98) 
 a) permittivity, permeability, insulation  b) permittivity, permeability, conductivity 
 c) permeability, resistivity, inductivity  d) permeability, flux, magnetism 
 
14. The characteristic impedance of a co – axial cable depends on  (CIVIL SERVICES) 
  1. ratio of outer and inner diameter 
  2. length of the cable 
  3. logarithmic ratio of outer and inner diameter 
  4. logarithmic ratio of outer and inner diameter and inversely as the square root of dielectric   
       constant. 
 The correct statements are 
 a) 3 & 4   b) 2 & 3  c) 1, 3, 4  d) 4 only 
 
15. The unit of μ0ε0 is        (NTPC’98) 
 a) Farad Henry b) m2 / sec2 c) amp sec / volt sec    d) Newton metre2/coulomb2 
 
16. Kirchoff’s current law for direct currents is implicit in the expression  (IES’97) 
 a) ∇ . D = f  b) ∫ J . n ds = 0  c) ∇ . B = 0  d) ∇ × H = J + ∂D/∂t 
 
17. Poisson’s equation for an inhomogeneous medium is    (IES’97) 
    a) ε∇2V = - ρ b) ∇ . (ε∇V) = - ρ  c) ∇2(εV) = - ρ d) ∇ . (∇εV) = - ρ 
 
18. A material is described by the following electrical parameters as a frequency of 10 GHz . σ = 106  
     mho / m, μ = μ0 and σ / σ0 = 10. The material at this frequency is considered to be  
      (σ0 = 1/36π × 10-9 F/m)         (GATE’93) 
 a) a good conductor     b) a good dielectric   
  c) neither a good conductor nor a good dielectric  d) a good magnetic material  
 
19. Copper behaves as a        (GATE’95) 
 a) conductor always  b) conductor (or) dielectric on the applied electric field strength 
 c) conductor (or) dielectric depending on the frequency 
 d) conductor (or) dielectric depending on the electric current density 
 
20. For a dipole antenna        (GATE’94) 
 a) The radiation intensity is maximum along the normal to the dipole axis 
 b) The current distribution along the length is uniform irrespective of the length 
 c) The effective length equals its physical length 
 d) The input impedance is independent of the location of the feed – point 
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21. The intrinsal impedance of a lossy dielectric medium is given by  (GATE’95) 
 a) jωμ / σ  b) jωε / μ  c) √ jωμ / (σ + jωε)  d) √μ / ε 
 
22. An antenna, when radiating, has a highly directional radiation pattern. When the antenna is  
 receiving, its radiation pattern       (GATE’95) 
 a) is more directive b) is less directive c) is same d) exhibits no directivity at all 
 
 

Two Mark Questions 
 
 
 
1. A composite parallel capacitor is made up of two different materials with different thickness (t1  
    and t2) as shown. The two different dielectric materials are separated by a conductivity foil F. The  
    voltage of the conductivity foil is.      (GATE’03, EEE) 
    a) 52 V 

d

 
    b) 60V      εr1 = 3; t1 = 0.5mm   
       εr2 = 4; t2 = 1mm    

100V 
F

    c) 67 V 
0V     

    d) 33 V 
 
2. A parallel plate capacitor has an electrode area of 100 mm2, with a spacing of 0.1 mm between the  
    electrodes. The dielectric between the plates is air with a permittivity of 8.85 × 10-12 F/m. The  
    charge on the capacitor is 100V. The stored energy in the capacitor is         (GATE’03, EEE)  
    a) 8.85 PJ   b) 440 PJ   c) 22.1 nJ  d) 44.3 nJ 
 
3. A circular ring carrying a uniformly distributed charge Q and a point charges –Q on the axis of the  
    ring are shown. The magnitude of the dipole moment of the charge system is (IES’93, EEE) 
    a) Qd 
    b) QR2 / d 
    c) Q √R2 + d2 
    d) QR 
 
4. Find the polarization in a dielectric material with εr = 2.8 if D = 3 × 10-7 c/m2. 
    a) 1.93 × 10-7 c/m2  b) 10-19 c/m2  c) 6.602 × 10-2 c/m2  d) 0 
 
5. Determine the value of electric field in a dielectric material for which χ is 3.5 and P is 2.3 × 10-7  
    c/m2. 
    a) 7.9 × 10-2   b) 62.1 × 10-3  c) 74.3 × 102   d) 83 × 103 
 
6. Calculate the emerging angle by which the vector E changes its direction as it passes from a  
    medium with εr = 100 into air making an angle of 45° with the interface as it enters 
    a) 90°   b) 0.57°  c) 0.89°   d) 45° 
 
7. Electric flux lines are incident in the porcelain insulator of ∈r = 6 at an angle of 45°. The electric  
    field in the insulator is 1000V/m. Determine the electric field in the air and the angle at which flux  
    lines are emerging out 
    a) 0.46°, 400 V/cm      b) 2.25°, 4000 V/cm c) 7.2°, 4925 V/cm     d) 9.46°, 4302 V/cm 
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Linked Question from Q.No 8 to 11 
 
 
 A parallel plate capacitor consists of two square metal plates of side 500 mm and separated by 
a 10 mm slab of Teflon with εr = 2 and 6mm thickness is placed on the lower plate leaving an air gap 
of 4mm thick between it and upper plate. A 100V is applied across capacitor. 
 
8. Find the capacitance between the plates 
    a) 2.2 × 10-8 F  b) 3.16 × 10-10 F  c) 4.26 × 10-6 F  d) zero 
 
9. Find the electric flux density of Teflon and air 
    a) 0.12 μc/m2, 0.12 μc/m2     b) 0.35 μc/m2, 0.12 μc/m2     c) 0.11 μc/m2, 0.35 μc/m2     d) 0 , 0  
 
10. Find the electric field intensity of Teflon and air 
      a) 12555 V/m, 6776 V/m    b) 13553 V/m, 6776 V/m   
      c) 0, 5826 V/m     d) 38265 V/m, 38265 V/m 
 
11. Find the electric potential of Teflon and air 
      a) 54.21 V, 40.66 V b) 34.11 V, 34.11 V   c) 0, 0  d) 1.1 V, 2.4 V 
 
12. Two conducting planes are located at Z equal to ‘0’ and 6 mm. In the region between 0 < Z < 2  
      mm there is a perfect dielectric with εr1 = 2, for 2 < Z < 5 mm, εr2 = 5. Find the capacitance per  
      square meter of surface if the region for 5 < Z < 6 mm is filled with air.  
      a) 2.8 nF/m2  b) 3.4 nF/m2  c) 1.1 nF/m2  d) 2.2 nF/m2 
 
13. A 2 μF capacitor is charged by connecting it across 100V D.C supply. The supply is now  
      disconnected and the capacitor is connected in parallel with another uncharged 2μF capacitor.  
      Assuming no leakage of charge, determine the energy stored in capacitor. 
      a) 0.01 Joules  b) 0.005 Joules c) 1.15 Joules  d) 0.5 Joules 
 
14. A parallel plate capacitor with air as dielectric has a plate area of 36π cm2 and separation of 1mm.  
      It is charged to 100V by connecting it across a battery. If the battery is disconnected and distance  
      is increased to 2mm, calculate the energy stored, assuming no leakage of charge 
      a) 0.6 × 106 Joules  b) 0.2 × 10-4 Joules    c) 0.23 × 104 Joules  d) 1 × 10-6 Joules 
 
15. A Co – axial capacitor of the compressed gas type is to be designed to have 60 × 10-12 F  
      capacitance and is to work at 200 KV dc. The maximum voltage gradient should not exceed  
      300KV per cm. If the outside diameter of the inner conductor is 5cm, determine the inner  
      diameter of the outer conductor and length of capacitor. Take the relative permittivity of gas to be  
      1.0. 
      a) 3.1 cm, l = 5m  b) 4.2 cm, l = 1m c) 8.3 cm, l = 7m d) 5.7 cm, l = 7m 
 
Key:  
One Marks: 
 
1.c 2.a 3.a 4.a 5.c 6.a 7.a 8.c 9.d 10.a 11.d 12.c 13.b 14.d 
 
15.b 16.b 17.a 18.a 19.a 20.a 21.c 22.c 
 
Two Marks: 
 
1.b 2.d 3.a 4.a 5.c 6.b 7.d 8.b 9.a 10.b 11.a 12.b 13.b 14.d 
 
15.d        
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ACE EDUCATIONAL ACADEMY 
 

TOPIC – 7: BIOT – SAVART’S LAW                E M F    
 
Magnetostatics deals with magnetic field produced by current carrying conductor. 
 

Magnetic field: 
 A static magnetic field can be produced from a permanent magnet or a current carrying 
conductor. A steady current of I amperes flowing in a straight conductor produces magnetic field 
around it. The field exists as concentric circles having centres at the axis of conductor. 
 

 If you hold the current carrying conductor by the right hand so that the thumb points the 
direction of current flow, then the fingers point the direction of magnetic field. The unit of magnetic 
flux is weber. One weber equals 108 maxwells. 
 

Magnetic flux density (B): 
 

 The magnetic flux per unit area is called magnetic flux density (or) magnetic induction vector. 
The unit of B is weber/m2 (or) Tesla. 
 

 The magnetic flux through any surface is the surface integral of the normal component of B. 
The magnitude and direction of B due to a current carrying conductor is given by ‘Biot – savart’s 
law’. 
 

 B = dφ /da 
  

dφ = B . da  
     

      
       φ = ∫ ∫  B. da 
               S  

 
 
 
Magnetomotive  force ( M.M.F) 
 

 M.M.F is produced when an electric current flows through a coil of several turns. The M.M.F 
depends on the current and the number of turns. Therefore, the unit for M.M.F is ampere turns. MMF 
is the cause that produces flux in a magnetic circuit. 
 

Reluctance (s): 
 

 Reluctance is the opposition to the establishment of magnetic flux and can be defined as the 
ratio of M.M.F to the flux produced. 
 

 It is directly proportional to the length of the magnetic path and inversely to the cross 
sectional area of the path. The reciprocal of reluctance is called “PERMEANCE”. 
 

B  

iot – Savart’s Law ( second Maxwell is equation): 

θ p
λ c/m

r 

I 
dl 

  
 
 
 
 
 BIOT and SAVART from their experimental observation deduced a mathematical expression 
for the elementary magnetic flux density produced by a current element at any particular point of 
observation (p). According to this law considering a current element of  length ‘dl’ carrying a current 
‘I’, the magnetic flux density at a point of observation ‘p’ is elementary field intensity.  
 Magnetic field intensity due to entire conductor can be obtained by line integral. 
 

 H = ∫  Idl x r  
           4π | r3|   
 

           B = μ /4πr3 ∫  Idl x r   [∵B = μH] 
Taking  divergence on both sides, 

 div.B = μ0/4π| r |3 ∫ div (Idl x r )  
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we know that  ∇ . ( u x v ) = v. curl u – u.curl v 
 
 div (Idl x r ) = r . curl  Idl – Idl. curl  r 
 

       ∇.B = μ0        ∫  ( r. curl  Idl – Idl. curl r ) 
      4π| r |3  
 
     Curl deals with rotation. The current element vector and distance vector have no rotation. 
Therefore curl of Idl and curl of  r  vanish.  
 
 ∇.B = μ0     ∫ (0 – 0) 
         4π| r |3   
 
      Maxwell’s 2nd equation. ∇.B = 0 
 
 

 
 This equation is called point form, field form, vector form or differential form of BIOT – 
SAVART law. It is also called second Maxwell’s equation. 
 
Magnetic field due to an infinite straight conductor 
 

z

Z

Y

X I

r

r

dl
λ c/m

p

   
 
 
 
 
 
 
 
 
 
 Consider an infinite straight conductor along the z-axis and carrying a current I along the 
positive Z-direction. Let ‘p’ be the point of observation on the x-y plane at a distance ‘r’ from the z-
axis. 
 
 Let Idl = small current element 
We know that, 
 
 dB = μo       (Idl x r )    

 

         4π | r |3 
 

Net magnetic field,  
                    ∞ 

 B =  μo /4π  ∫  rdz / (z2 + r2)3/2  φ  
        -∞ 
 
  B =  μo I /2πr  φ 
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Magnetic field due to a finite conductor: 
 
 Z 
 
  
 
 
  
 
 
 
 
 
 
     
 
 
Let us consider a finite conductor of length MN, for the sake of generality OM ≠ ON. Let ‘p’ be the 
point of observation on XY plane. 
 
 
 
 ∴Net magnetic field                                                   
 
 
 

 
Corollary-1: 
 
 Magnetic field due to infinite conductor 
  i.e  α = 0, β = 180o 
 
  ∴  
 
 
Corollary-2: 
  
 Magnetic field due to semi infinite conductor 
  ∝ = 90o, β = 180o 
 
 
 
 
 
Corollary-3: 
 
 Magnetic field due to finite along the perpendicular bisector 
  i.e  OM = ON 
           α  = 180-β 
 
 
                             ∴                           
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B = μ0I ( cosα - cosβ) φ 
      4πr 

B = μ0I  . φ 
       2πr 

B = μoI  . φ 
       4πr 

B = μoI  .cosα φ 
       2πr  

p

z 

Y

X
I 

r

r 

dl 

N  β

0

α 

M
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Magnetic field due to a circular current carrying loop along its axis: 
 
 

p

d

a

dBB Z

Y

d

r
B

dBA

φ
AI

 
  
 
 
 
 
 
 
 
 

X 
 
 Consider a circular loop of radius ‘a’ lying on a x-y plane with centre at origin and carrying a 
current I as shown. 
 
 Let the point of observation ‘p’ be at a distance ‘d’ from the centre of the loop. Considering 
two diametrically opposite current element located at A & B. 
  

 
 Let dBA & dBB vectors are   corresponding elementary magnetic flux densities at P. Resolving 
dBA & dBB vectors horizontal and vertical components, we find that horizontal components get 
cancelled and vertical components added up. 
 
 

B = μ0I a2    .     z 
       2(a2+d2)3/2 

 ∴Net magnetic field  
 
 
 
Corollary-1: 
 
 Magnetic field due to circular current carrying loop at its centre i.e d = o. 
 
 
                  ∴                         B = μ0I   z 

                2a  
 
 
Corollary-2: 
 
 Magnetic field due to a semicircular current carrying loop at its centre 
 
                                         
                                        ∴                                   

        B = μ0I    z 
                4a 

 
 
Corollary-3: 
 
 Magnetic field due to a thin circular coil of ‘N’ turns along the axis 
 
 
            Nturns          B = μ0NIa2 .    z 

              2(a2+d2)3/2  
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Magnetic field due to an infinite circular solenoidal along its axis: 
 

N

x
X-axis

a
dx

0

I

   
 
 
 
 
 
 
 Let us consider an infinite circular solenoidal of radius ‘a’ with ‘n’ no. of turns per unit length 
(n=N/l) and carrying a current I. Let the axis of a solenoid coincides with x-axis and origin coincides 
with the point of observation. Consider an elemental thickness ‘dx’ at a distance ‘x’ from the origin. 
 
 Therefore, the elemental magnetic flux density due to this elemental section at point of 
observation ‘o’ is given by  
 

 dB =  μ0 (ndx) Ia2 
          2(a2 + x2)3/2  
 
∴ Net magnetic field     B = μ0nI 
 
 

 
 The magnetic field due to an infinite circular solenoid is totally confined within the solenoid, 
uniform and axially directed and is equal to B = μ0nI. 
 
 The direction of the magnetic field depends on the sense of current carrying by the solenoid 
and the right hand screw rule. 
 
Magnetic field due to a finite circular solenoid along its axis: 
 

p0
β

x
X

I 

l

d x-d
(l/2-d)

a

dx

α

 
 
 
 
   

l/2 l/2

 
 
 
 
 Let us consider a finite circular solenoid of radius ‘a’ and length ‘l’. let ‘n’ be the no. of turns 
per unit length and  ‘I’ be the carrying current. Assume that the solenoid axis coincides with the x-
axis and the origin coincides with centre. Let ‘p’ be the point of observation at a distance ‘d’ from the 
centre. 
 
 ∴ 
 
 
 
Corollary-1: 
 Magnetic field due to an infinite circular solenoid 
  i.e  α = 0,  β = 0 
 
  ∴                         

B = μ0nI  (cosβ+cosα) 
         2 

B = μ0nI 
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Corollary-2: 
 
 Magnetic field due to a finite circular solenoid at the centre 
  i.e  α = β 
 
 
 B = μ0nI cosα 
 
 
Corollary-3: 
 
             Magnetic field at the end of a finite circular solenoid 
    β = 90o, α 
 
 B = μ0nI  cosα 
 2
 
 

Magnetic field due to an infinite surface current sheet: 

k
B A

α α
α

α
α

0

  
   
 
 
 
 
 
 
 
 
 
 
 
 
 Let us consider an infinite current sheet lying on x-y plane carrying a surface current along 
the positive x-direction ( K ) with a surface current density K. 
 
 Each strip carries an elementary current dI = kdy. 
 
 Net magnetic field                                   
 
 
 It the point of observation is below the surface current sheet, then  
           
           
         
 
 
Note:  
The magnetic field due to an infinite surface current sheet is independent of the distance of the point 
of observation from the sheet. The magnetic field due to an infinite sheet is a constant magnitude of 
μ0k /2 and has a direction given by the vector product of k x n. Where n is a unit vector normal to the 
sheet directed away from the sheet towards the point of observation. 
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ACE EDUCATIONAL ACADEMY 
 

TOPIC – 8: AMPERE’S LAW (Ampere’s circuital law)                     E M F    
     
 When the magnetic field has some form of symmetry the magnetic flux density can be 
determined with the application of law known as Ampere’s Law. 
 
 
            Consider an infinite straight conductor lying along the 
Z-axis carrying a current I along the +ve Z-axis. Let ‘c’ be the 
closed path enveloping around the conductor. Considering any point 
‘P’ on the closed path, the magnetic flux density at the point ‘P’ is 
given by 
 
  B =           φ  
 
  dl = (dr) r + (r dφ) φ + (dz) z   [cylindrical system] 
   
   B . dl =     .   r dφ 
        
        2π 
  ∫  B . dl =           r ∫   dφ 
  C      0 
   = μ0I  
 
         
  ∫  B . dl =  μ0 Ienclosed           Ampere’s law in integral form 
  C     
 
 

Statement :    Considering any closed path in a magnetic field the line integral of tangential 
component of the magnetic field around the closed path is equal to μo times current enclosed. 
 

Differential form of Ampere’s Law: 
 

 

 
 
 
 

 
 
 
 2. Variation of Magnetic flux density (B) due to a circular conductor:  
 
 A solid cylindrical conductor of radius ‘a’ carries a direct current  
‘ I ’. 
 
Inside (r < a) : 
 
 Considering the ampere loop A and applying Ampere’s Law, 
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B . dl  =   μoIenclosed 
  ∫ 

 ∇ x B  = μoJ 

 ∇ x H  =  J Point from (or) Maxwell’s 4th  equation 

Bi  =     μoIr   φ 
            2πa2 

 ∴ B α r 

 μ0I 
 2πr  

 μ0I 
 2πr  

 μ0I 
 2πr  

Ampere’s    
     loop 

Z

r b
P 

I

 ((∇ x B) . da = μo   J . da     ∫∫ ∫∫ 

(or)

a

Ai r A0
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O

Z

a

b c
II 

I

utside ( r > a) : 

Considering an ampere Loop Ao and applying 

. Variation of Magnetic flux density  (B) due to Hallow conductor 

ase(i) : (r < a) 
ct an Ampere’s Loop such that r < a.  

ase (ii) : (a < r < b) 

 Construct an ampere’s loop and apply Ampere’s Law 

ase(iii) : (r > b) 

Construct an ampere’s loop and apply Ampere’s Law 

. Varia  a pair of coaxial transmission line conductors 

ase I:  (0 <

 
 

r = a

B

r

 μ0I
2πa

            Ampere’s Law, 
  

Bo  =    μoI   φ  
            2πr  

      B  1/rα 
 
3
 

B

a 

r

b
C
               Constru
               Apply Ampere’s Law 
       

Bi = 0        
 
C
 
  
 
 
 
 
 
C
  
   
 
 
 
 
4 tion of Magnetic flux density (B) due to
 
C   r < a) 

 Considering an ampere loop and applying Ampere’s law, 

  (a <

 
  
 
 
 
 Case II:   r < b) 
 
 
 
Case III:  (b <  r < c) 
 
 
 
Case IV:  ( r > c) 
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B1  =    μoI r  φ 
            2πa2 

B2  =    μoI    φ 
            2πr 

B4 = 0 

  μoI    φ 
  2πr 

B  = 

 μoI       (r -a )    2 2 φ 
 2πr       (b2-a2) 

B  = 

B   =    μoI       (c2-r2)    3 φ 
            2πr       (c2-b2) 
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ACE EDUCATIONAL ACADEMY 
 

TOPIC –  9: MAXWELL’S EQUATIONS                       E M F  
 
 

1. Maxwell’s Equations for time varying fields: 
 
Differential Form   Integral Form 

 
 

1. Div D = ρ    1. ∫  D.da = ∫ ρdv 
     s             v 

 
2. Div B = 0    2. ∫ B.da = 0 

    s 
 
3. Curl E = - ∂B   3. ∫ E. dl = - ∂    ∫ B. da 

         ∂t            ∂t   s 
 

4. Curl H = J + ∂D   4. ∫  H . dl = ∫ J. da + ∫ Jd . da 
             ∂t            s            s 

 
 5. Div J = - ∂ρ    5. ∫ J. da = - ∂     ∫  ρdv 

       ∂t       s         ∂t    v 
 
2. Maxwell’s Equations for Static Fields (Time Invariant Fields): 
 

1. Div D = ρ 
2. Div B = 0 
3. Curl E = 0 
4. Curl H = J 
5. Div J = 0 

 
3. Maxwell’s Equations for Dielectrics: 
 

1. Div D = 0 
2. Div B = 0 
3. Curl E = - (∂B/∂t) 
4. Curl H =  (∂D/∂t) 
5. Div J = 0 

 
4. Maxwell’s Equations for Good Conductors: 
 

1. Div D = 0 
2. Div B = 0 
6. Curl E = - (∂B/∂t) 
3. Curl H = J 
4. Div J = 0 

 
5. Maxwell’s Equations for Free Space: 
 

1. Div D = 0 
2. Div B = 0 
3. Curl E = - (∂B/∂t) 
4. Curl H = (∂D/∂t) 
5. Div J = 0 

(Contd …54)  
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6. Maxwell’s Equations for Harmonically Varying Fields: 
 
  Substitute  (∂D/∂t) = jωD;     (∂B/∂t) = jωB 

1. Div D = ρ 
2. Div B = 0 
3. Curl E = -jωB 
4. Curl H = J + jωD = σE + jωεE = (σ+jεω)E 
5. Div J = - (∂ρ/∂t) = -jωρ 

 
7.  Free Space Electromagnetic Wave Equation: 
 
 we know, 
   Curl E = -(∂B/∂t) 

 ∇ x E = - μ (∂H/∂t)   …….. (1) 
   Curl H = J +(∂D/∂t) 
   ∇ x H = (∂D/∂t)    since J = 0 in free space 

   ∴  Curl H = ε (∂E/∂t)   …….. (2) 
 Taking curl on both sides for equation (2) 
   ∇ x ∇ x H = ε ∂/∂t (∇ x E)  

∇ (∇.H) - ∇2 H = ε ∂/∂t (∇ x E)  ……..(3) 
 

we know that ∇ . H = 0 and substitute (1) in (3) 
- ∇2 H = ε ∂/∂t (-μ ∂H/∂t)  
  ∇2 H = με ∂2H/∂t2  

  in free space εr = 1, μr = 1 

∴ ……..(4) ∇2 H = μ0 ε0 ∂2H/∂t2 
 
This is called free space electromagnetic wave equation in terms of ‘H’. 
 
From equation 1: ∇ x E = - μ (∂H/∂t)  
 
 taking curl on both sides and substitute ∇ x H = ∂D/∂t 
 

∇ (∇.E) - ∇2 E = -μ ∂/∂t (∂D/∂t)  
 
We know that ∇ . E = 0 

- ∇2 E = -μ ∂/∂t (ε ∂E/∂t)  
 

∴ …  …..(5) 
 

since in free space εr = 1, μr = 1 
 
This is called free space electromagnetic wave equation in terms of ‘E’.            (Contd,..55) 
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ACE EDUCATIONAL ACADEMY 
 

 

OBJECTIVES 
 

One Mark Questions 
 
1. Magnetic flux density at a point distance R due to an infinitely long linear conductor carrying a  
    current I is given by      (CIVIL SERVICES’93) 
    (a) B = 1/(2μπR)  (b) B = μI / 2R (c) B = μI / 2πR (d) B = μI / 2πR2 
 

2. Maxwell’s divergence equation for the magnetic field is given by        (CIVIL SERVICES’93) 
    (a) ∇ × B = 0  (b) ∇ . B = 0  (c) ∇ × B = ρ  (d) ∇ . B = ρ 
 

3. Consider the following statements regarding Maxwell’s equation in differential form (symbols  
    have the usual meanings)      (CIVIL SERVICES’94) 

1. For free space ∇ × H = (σ + jωε)E 
2. For free space ∇. B = ρ 
3. For steady current ∇ × H = J 
4. For static electric field ∇ . D = ρ 

    Of these statements: 
    (a) 1 & 2 are correct        (b) 2 & 3 are correct    (c) 3 & 4 are correct       (d) 1 & 4 are correct 
 
4. When an iron core is placed between the poles of a permanent magnet as shown  below, the  
    magnetic field pattern is: 
 

S  
 
   
 
 
 
 
 
 

5. The M.K.S unit of magnetic field H is 
    (a) ampere  (b) weber  (c) weber per square meter         (d) ampere per meter 
 

6. The reflection coefficient, characteristic impedance and load impedance of a transmission line are  
    connected together by the relation 
 
    (a) Kr =      (b) Kr =        (c) Kr =    (d) Kr =  
 
7. The characteristic impedance of a lossless transmission line is given by  
    (a) √(LC)  (b) √(L/C)  (c) 1 / √LC  (d) √(C/L)  
 

8. Poynting vector signifies    
    (a) current density vector producing electrostatic field 
    (b) power density vector producing electromagnetic field 
    (c) current density vector producing electromagnetic field 
    (d) power density vector producing electrostatic field 
 

9. The capacitance per unit length and the characteristic impedance of a lossless transmission line are  
    ‘C’ and ‘Z0’ respectively. The velocity of a traveling wave on the transmission line is:  (GATE’96) 
    (a) Z0C  (b) 1 / (Z0C)  (c) Z0 / C  (d) C / Z0 
 

10. The equation for distortionless transmission is R/G = L/C. To attain it, in a line,      
  (a) of all the parameters, it is best to increase L for distortionless transmission 
 (b) Keeping R, and L constant it is preferable to increase or decrease G, and C 
 (c) the inductance  can be added at any interval 
 (d) the inductance can be of any value 
 

(Contd …56)  

ZL + Z0 
Z0 – ZL  

  Z0 ZL 
Z0 – ZL

ZL - Z0  
ZL + Z0

ZL - Z0 
 Z0 ZL

S 

S 

S 

(a) N

(b) N

(c) N

N(d) 
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11. The inconsistency of continuity equation for time varying fields was corrected by Maxwell and  
 the correction applied was      (CIVIL SERVICES) 
 (a) Ampere’s law, ∂D/∂t     (b) Gauss’s law, J 
 (c) Faraday’s law, ∂B/∂t     (d) Ampere’s law, ∂ρ / ∂t 
 
12. Which one of the following statements DOES NOT pertain to the equation ∇ . B = 0 ? 
 (a) There are no sinks and sources for magnetic fields    (IES’97) 
 (b) Magnetic field is perpendicular to the electric field 
 (c) single magnetic pole cannot exist 
 (d) B is solenoidal 
 
13. For incidence from dielectric medium (ε1) into dielectric medium 2(ε2) the browster angle θp and  
 the corresponding angle of transmission θt for ε2/ε1 = 3 will be respectively   (IES’98) 
 (a) 30° and 30°  (b) 30° and 60° (c) 60° and 30° (d) 60° and 60° 
 
14. A transmission line whose characteristic impedance is a pure resistance (GATE’92) 
 (a) must be a lossless line   (b) must be a distortionless line 
 (c) may not be a lossless line  (d) may not be a distortionless line 
 
15. A very lossy, λ/4 long, 50 ohms transmission line is open circuited and the load end. The input  
  impedance measured at the other end of the line is approximately  (GATE’97) 
 (a) 0  (b) ∞  (c) 50 ohms  (d) none of the above 
 
16. The intrinsic impedance of copper at high frequencies is    (GATE’98) 
 (a) purely resistive     (b) purely inductive 
 (c) complex with a capacitive component (d) complex with an inductive component 
 
17.  The depth of penetrations of wave in a lossy dielectric increases with increasing (GATE’98) 
 (a) conductivity       (b) permeability        (c) wave length  (d) permittivity 
 
18. The equation ∇ . J = 0 is known as     (IES’00) 
 (a) Poisson’s equation   (b) Laplace equation 
 (c) Continuity equation   (d) Maxwell equation 
 

 
Two Mark Questions 

 
19. A slab of uniform magnetic field deflects a moving charged particle by 45° as shown in figure.  
 The kinetic energy of the charged particle at the entry and exit points in the magnetic field will  
 change in the ratio of  B

45° (a) 1 : √2 
 (b) √2 : 1 
 (c) 1 : 1 
 (d) 1 : 2 
  
20. In the figure shown below, the force acting on the conductor PQ is in the direction of 
 (a) PQ  

n

Q

II  (b) QP 
 (c) – n 
 (d) n P I -n 
 
 
 

(Contd …57)  
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21. A straight wire of circular cross – section carries a direct current I, as shown in figure below. If R  
 is the resistance per unit length of the wire, the poynting vector at the surface of the wire will be 
 (a) RI2 . n   (b) RI2   .  (- n )      (IES’93) 

r
n I      2πr        2πr 

 
 (c) RI2 . n   (d) RI2  .  (- n ) 
        2π         2π 
 

22. A transverse electromagnetic wave with circular polarization is received by a dipole antenna. Due  
 to polarization mismatch, the power transfer efficiency from the wave to the antenna is reduced to  
 about          (GATE’96) 
 (a) 50%   (b) 33.3%  (c) 25%  (d) 0% 
 

23. Following equations hold for the time – varying fields:    (ICS’96) 
  i) ∇ × E = - (∂B/∂t) 
  ii) E = - ∇V – (∂A/∂t) 
  iii) ∇2V + ∂/∂t(∇.A) = - (ρv/ε) 
  iv) B = ∇ × A 
  v) ∇ × H = J + ∂E/∂t 
 In the above equation: 
 (a) both V and A are completely defined and thus can be evaluated 
 (b) V is completely defined but not A 
 (c) A is completely defined but not V  (d) both A and V are not completely defined 
 

24. Match List – I with List – II and select the correct answer using the codes given below the lists: 
   List – I      List – II  (ICS’96)  
  A) ∫ (J + ∂D/∂t) . n ds     1) zero  
  B) - ∫ (∂B/∂t) . n ds     2) ∫ dv 
         s           v 
  C) ∫ D . n ds      3) ∫ E . dl 
         s           c 
  D) ∫ B . n ds      4) ∫ H . dl 
       s           c 
         5) ∫ B dv 
             v 
 Codes: 
 (a) A-4,B-3,C-2,D-1 (b) A-3,B-4,C-2,D-1       (c) A-2,B-5,C-4,D-1      (d) A-4,B-2,C-3,D-1 
 

25. The energy stored in the magnetic field of a solenoid 30 cm long and 3 cm diameter wound with  
 1000 turns of wire carrying a current of 10A is     (GATE’96) 
 (a) 0.015 Joule  (b) 0.15 Joule  (c) 0.5 Joule  (d) 1.15 Joule 
 

26. Match List – I with List – II and select the correct answer using the codes given below the lists: 
   List – I(Maxwell’s equation)    List – II (IES’95)  
  A) ∇ × H = J + ∂D/∂t     1) Faraday’s law 
  B) ∇ × E = -(∂B/∂t)     2) Gauss’s Law 
  C) ∇ . D = ρ      3) Ampere’s law 
 Codes: 
 (a) A – 3,B – 1,C – 2 (b) A – 2,B – 1,C – 3     (c) A – 3,B – 2,C – 1      (d) A – 1,B – 2,C – 3  
 

27. Match List – I with List – II and select the correct answer using the codes given below the lists: 
   List – I     List – II   (ICS) 
  A) ∇ × E = 0    1) ∫ H . dl = ∫ J . dA 
  B) ∇ . D = ρ    2) ∫ E . dl = 0 
  C) ∇ × B = μ0J   3) ∫ B . dl = 0 
  D) ∇.B = 0    4) ∫ E . dA = ∫ ρ dV 
 Codes: 
 (a) A-1,B-2,C-3,D-4 (b) A-2,B-3,C-1,D-4       (c) A-3,B-4,C-1,D-2      (d) A-2,B-4,C-1,D-3 
 

(Contd …58)  
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28. Match List – I with List – II and select the correct answer using the codes given below the lists: 
   List – I      List – II  (ICS)  
  A) Electric field E    1) amp/metre2 
  B) Magnetic flux density B   2) coulomb/metre2 
  C) Current density J    3) amp/metre 
  D) Magnetic field strength H   4) Volt/metre 
        5) Tesla 
 Codes: 
 (a) A-5,B-4,C-1,D-2 (b) A-4,B-3,C-2,D-1       (c) A-1,B-4,C-2,D-5      (d) A-4,B-5,C-1,D-3 
 
29. A transmission line of characteristic impedance 300Ω is terminated by a load of (300 – j300)Ω.  
 The transmission coefficient is       (NTPC’98) 
 (a) 1.12 ⎣76.68°  (b) 1.08 ⎣76.68°    (c) 1.265 ⎣-18.43°  (d) 0.791⎣-18.45° 
 
30. The input impedance of a lossless transmission line is 100Ω when terminated in a short – circuit,  
 and 64Ω when terminated in an open circuit. The characteristic impedance of the line is 
 (a) 80Ω   (b) 164Ω  (c) 36Ω  (d) 64Ω (IES’97) 
 
31. Match List – I with List – II and select the correct answer using the codes given below the lists: 
   List – I      List – II  (IES’98) 
  A) ∇ . D = ρ     1) Ampere’s law 
  B) ∇ . J = -(∂ρ/∂t)    2) Gauss’s law 
  B) ∇ × H = JC     3) Faraday’s Law 
  C) ∇ × E = -(∂B/∂t)    4) Continuity equation 
 Codes: 
 (a) A-4,B-2,C-1,D-3       (b) A-2,B-4,C-1,D-3    (c) A-4,B-2,C-3,D-1        (d) A-2,B-4,C-3,D-1 
 
32. Which of the following pairs of parameters and expressions is/are correctly matched? 

1. Characteristic impedance ………  (E/H) √εr    (IES’98)  
2. Power flow density  ……………..  ∇ × H 
3. Displacement current in 

         non - conducting medium ……….. E × H 
 Select the correct answer using the codes given below. 
 Codes: 
 (a) 1 alone   (b) 2 and 3  (c) 1 and 3  (d) 1 and 2 
 
33. If the electric field E = 0.1te-1ax and ε = 4ε0, then the displacement current crossing an area of  
 0.1m2 at t = 0 will be        (IES’98) 
 (a) zero   (b) 0.04 ε0  (c) 0.4 ε0  (d) 4ε0 
 
34. The wave length of a wave with propagation constant (0.1π + j0.2π)m-1 is      (GATE’98) 
 (a) 2/√0.05m  (b) 10m  (c) 20m  (d) 30m 
 
35. The polarization of wave with electric field vector E = E0 ej(ωt + βz) (ax + ay) is    (GATE’98) 
 (a) Linear  (b) elliptical  (c) left hand circular  (d) right hand circular 
 
36. The vector H in the far field of an antenna satisfies    (GATE’98) 
 (a) ∇ . H = 0 and ∇ × H = 0  (b) ∇ . H ≠ 0 and ∇ × H ≠ 0 
 (c) ∇ . H = 0 and ∇ × H ≠ 0  (d) ∇ . H ≠ 0 and ∇ × H = 0 
 
Key 
1.c  2.b 3.c 4.c 5.b 6.c 7.b 8.b 9.b 10.a 11.a 12.b 13.c  
 
14.c 15.a 16.d 17.c 18.b 19.c 20.c 21.b 22.a 23. a 24.a 25.b 26.a  
 
27.d 28.d 29.c 30.a 31.b 32.a 33.b 34.b 35.a 36.c                 (Contd…..59) 
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ACE  EDUCATIONAL  ACADEMY 
 

TOPIC – 10: INDUCTANCE OF SIMPLE GEOMETRIES                     E M F  
 
1. INDUCTANCE OF A TOROIDAL COIL: I
     
      R is Mean radius and N is No. of turns    R
  μoN2S 

  2πR ∴ L =  
 
      where S = area of cross-section of the core 

a

b 
2. INDUCTANCE OF A COAXIAL CABLE: 
 
   μo    ln(b/a)    

L

r 

 X A BP 
11
dx

x (d-x)

(d-r)
d

 
 
 Total inductance of the cable can be obtained by multiplying the above 
equation with the length of the cable. 
 
 
3. INDUCTANCE OF SOLENOID: 
 
 
 
  ∴ 
 
 
 
4. INDUCTANCE OF 1-φ LINE ;- 
 
           H/m / conductor  
 
 
For a transmission line of length ‘l’ meter, there are l number  
of inductors in series.Total inductance is the product of inductance  
per meter length and the length of the line. 
 
 Total inductance =L l 
 
Loop inductance is a series combination of forward and return 
conductors. Loop inductance of single phase line is 2Ll . 
 
 
5. SINGLE LAYER AIR CORE COIL: 
 
 
 
 
 
6. MULTI LAYER AIR CORE COIL: 
 
        
      
 

** ALL THE BEST **          yours venugopal 

l 
a

  2π H/m ∴ L = 

 

  L = N2Aμ 
            l

 

  L = 2l × 10-7

                   
n  d – r  

r  

 ∴ L = 39.5 N2a2 

              9a+10l  

r1
r l 2 ∴ L  =         31.6 N2r1 

              6r1+ 9l + 10(r2 – r1)   
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